Math, asked by mehraj9284, 8 months ago

If sin θ = √3 cos θ, 0° < θ < 90°, then θ is equal to

Answers

Answered by ankesh111
21

Step-by-step explanation:

\huge\star\bold\red{ANSWER}

sinθ+cosθ= 3

SQUARING BOTH SIDE....

=>(sinθ+cosθ)²= 3

=>sin2θ+cos 2θ+2sinθcosθ=3

⇒2sinθcosθ=2

⇒sinθcosθ=1

⇒sinθcosθ=sin²θ+cos²θ

⇒1=(sin²θ+cos²θ)/(sinθ×cosθ)

⇒tanθ+cotθ=1

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
61

\huge\sf\pink{Answer}

☞ Your Answer is 60°

\rule{110}1

\huge\sf\blue{Given}

✭ sin θ = √3 cos θ

✭ θ is acute , that is 0°< θ<90°

\rule{110}1

\huge\sf\gray{To \:Find}

◈ The Value of θ?

\rule{110}1

\huge\sf\purple{Steps}

\bullet\underline{\textsf{As Per the Question}}

\sf{\dashrightarrow sin\theta=\sqrt{3}cos\theta}

\sf{\dashrightarrow\dfrac{\sin\theta}{cos\theta}=\sqrt{3}}

\sf{\dashrightarrow\tan\theta=\sqrt{3}}

\sf{\dashrightarrow tan\theta=tan60^{\circ}}

\textsf{Eliminating tan both sides}

\orange{\sf{\dashrightarrow \theta=60^{\circ}}}

\rule{100}{1.5}

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle &amp; 0 &amp; 30 &amp; 45 &amp; 60 &amp; 90\\\cline{1-6}Sin \theta &amp; 0 &amp; $\dfrac{1}{2} &amp;$\dfrac{1}{\sqrt{2}} &amp; $\dfrac{\sqrt{3}}{2} &amp; 1\\\cline{1-6}Cos \theta &amp; 1 &amp; $\dfrac{\sqrt{3}}{2}&amp;$\dfrac{1}{\sqrt{2}}&amp;$\dfrac{1}{2}&amp;0\\\cline{1-6}Tan \theta&amp;0&amp;$\dfrac{1}{\sqrt{3}}&amp;1&amp;\sqrt{3}&amp;Not D{e}fined\end{tabular}}

\rule{170}3

Similar questions