Math, asked by Jiyang4109, 10 months ago

If sin 3A = cos(A – 26°), where 3A is an acute angle, find the value of A.

Answers

Answered by abhilashAK
0

Step-by-step explanation:

the value of teta is 29degrees

Attachments:
Answered by Anonymous
0

Answer:

Given, \:  \sin(3A)  =  \cos(A -  {26}^{o} )  \:  \:  \:  \:  \:  \: ...........(i) \\ where, \: 3A \: is \: an \: acute \: angle. \\ We \: know \: that, \:  \: sin ϑ  = cos( {90}^{o}  -  ϑ ) \\ From \: Eq.  \: (i),  \: cos( {90}^{o}  - 3A) = cos(A - 26) \\ Since, \: ( {90}^{o}  - 3A) \: and \: (A -  {26}^{o} ) \: both \: are \: acute \: angles. \\ ∴ \:  {90}^{o}  -3A = A -  {26}^{o}  \\ ➪ \: 4A =  {116}^{o}  \\ ➪ \: A =  \frac{ {116}^{o} }{4}  \\ ➪ \: A =  {29}^{o}

Similar questions