If sin 3a = cos (a-6) where 3a and a-6 are both
Answers
Answered by
7
I think question is like this ,
Sin3A = Cos ( A - 6 ) , where 3A and A - 6 are both acute angle then find value of A.
Solution---> ATQ,
Sin3A = Cos ( A - 6 )
We have a formula
Cosθ = Sin ( 90° - θ ) , applying it we get,
=> Sin3A = Sin { 90° - ( A - 6 ) }
=> Sin3A = Sin ( 90° - A + 6 )
=> 3A = 90° - A + 6
=> 3A + A = 96
=> 4A = 96
=> A = 96 / 4
=> A = 24°
Additional formuee--->
(1) Cos ( 90° - θ ) = Sinθ
(2) tan ( 90° - θ ) = Cotθ
(3) Cot ( 90° - θ ) = tanθ
(4) Sec ( 90° - θ ) = Cosecθ
(5) Cosec( 90° - θ ) = Secθ
Answered by
1
Answer:
Step-by-step explanation:
sin 3A = cos (A-6)
sin 3A = sin (90-(A-6))
( since sin(90- A) = cos A)
therefore,
3A = 90-(A-6)
3A = 90-A+6
3A+A = 96
4A = 96
A = 96/4
A = 24
Similar questions