If sin 3x = 1 and 0° < 3x < 90°, find the values of
(i) sin x
(ii) cos 2x
(iii) tan^2 x - sec^2 x.
Answers
Step-by-step explanation:
sin 3x = 1
3x = 90
x = 30
Now
sin 30 = 1/2
cos 2×30 = cos 60 = 1/2
tan^2 x - sec^2 x = -1
Hope it helps you mate.
Plz mark branliest.
Given,
- sin 3x = 1
- 0° < 3x < 90°
To find,
- sin x
- cos 2x
Solution,
If sin 3x = 1 and 0° < 3x < 90°, then the values of sinx is 1/2, cos2x is 1/2, and is -1.
We can simply find the values of the given trigonometric functions by using the concepts of trigonometry,
Sin 3x = 1
As we know, sin 90° = 1, then replacing 1 by sin 90° in the above equation, we get
Sin 3x = Sin 90°
Pre-multiplying by Sin⁻¹ on both sides, we get
Sin⁻¹ Sin 3x = Sin⁻¹ Sin 90°
3x = 90
x = 30
Now, sinx = sin 30° = 1/2
For cos 2x,
Cos 2x = cos 2(30)
= cos 60° [ cos 60° = 1/2]
= 1/2
Cos 2x = 1/2
Now,
= tan² 30 - sec² 30
= 1/3 - 4/3 [tan 30° = 1/√3] [ sec 30° = 2/√3]
= 1-4/3
= -3/3
= -1
= -1
Hence, if sin 3x = 1 and 0° < 3x < 90°, then the values of sinx is 1/2, cos2x is 1/2, and is -1.