Math, asked by pankaj990gupta, 5 months ago


If sin 3x = 1 and 0° S 3x < 90°, find the values of
(i) sin x
(ii) cos 2x
(iii) tan^2x-sec^2x.

Answers

Answered by PharohX
2

Answer:

Given :

Sin (3x) = 1 where. 0°<3x <90°

To find :

(i) sin x

(ii) cos 2x

(iii) tan^2x-sec^2x.

Solution :-

We know that if

 \sin(\theta)  = 1 \\ \theta \:  = 90 \:  \:  \:  \:  \:  \:

then replace. theta by 3x

 \sin(3x)  = 1 \\ \\  3x = 90 \:  \:  \:  \:  \:  \:  \:  \\  \\  x =  \frac{90}{3}  = 30

Hence. x=30°

(1)  \sin(x)  =  \sin(30) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{2}

(2) \:  \cos(2x)  =  \cos(2 \times 30)   \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  =  \cos(60)  \\ \\   =  \frac{1}{2}

 { \tan^{2} (2x) } -  \sec {}^{2} (2x)  \\  \\  =  \tan {}^{2} (2 \times 30)  -  \sec {}^{2} (2 \times 30)  \\  \\  =  \tan {}^{2} (60)  -  \sec {}^{2} (60)  \\  \\  = ( { \sqrt{3} )}^{2}  -  {2}^{2}  \\  \\  = 3 - 4 \\  \\  =  - 1

Similar questions