Math, asked by aadithya2711p43gpy, 1 year ago

If sin^3x + cosec^3x = 110, then the value of sin^2x + cosec^2x is equal to

Answers

Answered by shadowsabers03
1

Let \sin x=k. Then \csc x=\dfrac {1}{k}. So we have the equation,

k^3+\dfrac {1}{k^3}=110\quad\longrightarrow\quad (1)

But we know that,

a^3+b^3=(a+b)(a^2-ab+b^2)

Then,

\left (k+\dfrac {1}{k}\right)\left (k^2+\dfrac {1}{k^2}-1\right)=110\\\\\\\left (k+\dfrac {1}{k}\right)\left (k^2+\dfrac {1}{k^2}+2-3\right)=110\\\\\\\left (k+\dfrac {1}{k}\right)\left (\left (k+\dfrac {1}{k}\right)^2-3\right)=110

Let k+\dfrac {1}{k}=p. Then,

p(p^2-3)=110\\\\p^3-3p-110=0\\\\p^3-5p^2+5p^2-25p+22p-110=0\\\\p^2(p-5)+5p(p-5)+22(p-5)=0\\\\(p-5)(p^2+5p+22)=0

Since the roots of p^2+5p+22=0 are not real,

p=5\\\\\\k+\dfrac {1}{k}=5\\\\\\\left (k+\dfrac {1}{k}\right)^2=5^2\\\\\\k^2+\dfrac {1}{k^2}+2=25\\\\\\k^2+\dfrac {1}{k^2}=23

That is,

\large\boxed {\sin^2x+\csc^2x=\mathbf {23}}

#answerwithquality

#BAL

Similar questions