Math, asked by satakshi1764, 11 months ago

if sin=5/13, find cos and tan

Answers

Answered by Anonymous
47

Given

 \boxed{Sin \theta= \dfrac{5}{13}}

As we know :-

 \boxed{Sin\theta = \dfrac{p}{h}}

Then We have

▪️Perpendicular = 5

▪️Hypotenuse = 13

Then From Pythagorean theorem :-

 h = \sqrt{p^2 + b^2}

\implies h^2 = p^2 + b^2

\implies h^2 - p^2 = b^2

\implies b = \sqrt{h^2 - p^2}

\implies b = \sqrt{ 13^2 - 5^2 }

\implies b = \sqrt{169 - 25}

\implies b = \sqrt{144}

\implies b = 12

Now

▪️As

 \boxed{Cos \theta= \dfrac{b}{h}}

▪️So

 \boxed{Cos\theta = \dfrac{12}{13}}

▪️As

 \boxed{Tan\theta = \dfrac{p}{b}}

▪️So

 \boxed{Tan \theta= \dfrac{5}{12}}


muskanc918: superb!
Anonymous: ^_^ , Thanks di !
muskanc918: wello @bhai ❤❤
Answered by abhineetsinghrajput
16

Answer

Step-by-step explanation:

  1. sin=perpendicular/hypotenuse=5/13
  2. 5=perpendicular &3=hypotenuse
  3. using p.t
  4. 13^2=5^2+b^2
  5. 169-25=b^2
  6. b=12
  7. cos=12/13 & tan=5/12
Similar questions