If sin^6 θ + cos^6 θ + k cos^2 2θ = 1 and , where p and q are co-prime, then find p + q.
Answers
Answered by
0
Answer:
Step-by-step explanation:We know that,
sin2 θ + cos2 θ = 1
Taking,
L.H.S = tan2 θ cos2 θ
= (tan θ × cos θ)2
= (sin θ)2
= sin2 θ
= 1 – cos2 θ
= R.H.S
– Hence Proved
Answered by
59
GIVEN:-
REQUIRED TO FIND :- Value of k.
SOLUTION: -
We have,
sin^ 6 θ+cos^6 θ=1−ksin^2 2θ
☆ a^3+b^3=(a^2+b^2)^3−3a^2.b^2(a^2+b^2)☆
=(sin^2θ+cos^2θ)^3−3sin^2θ.cos^2θ(sin^2θ+cos^2θ)=1−ksin^22θ
13−3sin2θ.cos2θ=1−ksin22θ
k=sin22θ3sin2θ.cos2θ
=2sin2θ.cos2θ3sin2θ.cos2θ
Therefore,
》k=3/2
HOPE IT HELPS :)
Similar questions