If sinθ =7/25 , find the values of cosθ and tanθ.
Answers
Answered by
2
QUESTION :
If sinθ =7/25 , find the values of cosθ and tanθ.
GIVEN :
sinθ =7/25
By using trigonometry identity :
sin²θ + cos²θ = 1
cosθ = √(1-sin²θ)
cosθ = √1-(7/25)²
cosθ = √ 1 - (49/625)
cosθ = √ (625 - 49)/625
cosθ = √576 /625
cosθ = 24/25
By using trigonometry identity :
tanθ = sinθ/cosθ
tanθ = (7/25) / (24/25)
tanθ = (7/25) × (25/24) = 7/24
tanθ = 7/24
Hence, the values of cosθ = 24/25 and tanθ = 7/24
HOPE THIS WILL HELP YOU...
If sinθ =7/25 , find the values of cosθ and tanθ.
GIVEN :
sinθ =7/25
By using trigonometry identity :
sin²θ + cos²θ = 1
cosθ = √(1-sin²θ)
cosθ = √1-(7/25)²
cosθ = √ 1 - (49/625)
cosθ = √ (625 - 49)/625
cosθ = √576 /625
cosθ = 24/25
By using trigonometry identity :
tanθ = sinθ/cosθ
tanθ = (7/25) / (24/25)
tanθ = (7/25) × (25/24) = 7/24
tanθ = 7/24
Hence, the values of cosθ = 24/25 and tanθ = 7/24
HOPE THIS WILL HELP YOU...
Similar questions