Math, asked by theman7491, 4 days ago

If sin 80 + sin 50= 2 sin a sin b find a,b.

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \sin(80\degree)  +  \sin(50\degree)  = 2 \sin(a) \sin(b)   \\

  \implies2\sin \left( \dfrac{80\degree  +50\degree}{2} \right) \cos\left( \dfrac{80\degree   - 50\degree}{2} \right) = 2 \sin(a) \sin(b)   \\

  \implies2\sin \left( \dfrac{130\degree }{2} \right) \cos\left( \dfrac{30\degree }{2} \right) = 2 \sin(a) \sin(b)   \\

  \implies2\sin \left( 75\degree \right) \cos\left(15\degree \right) = 2 \sin(a) \sin(b)   \\

  \implies2\sin \left( 75\degree \right) \sin\left(90 \degree - 15\degree \right) = 2 \sin(a) \sin(b)   \\

  \implies2\sin \left( 75\degree \right) \sin\left(75\degree \right) = 2 \sin(a) \sin(b)   \\

On comparing, a = 75° and b = 75°

Similar questions