Math, asked by anjana252004, 8 months ago

If sin A =1/2 cos B =root3/2 where A is in2nd quadrant and B is in 1st quadrant. find the value of tan (A+B)​

Answers

Answered by deepakPGDV
2

\huge{ \bold{ \underline {\underline{Answer:}}}}

 \tan(A+B)  =  \sqrt{3}

{ \bold{ \underline {\underline{Step \: by \: step \: explanation:}}}}

{ \bold{ \underline {\underline{Given \: that:}}}}

 \sin(A)  =  \frac{1}{2} ;  \cos(B)= \sqrt{ \frac{3}{2} }   \\  { \bold{ \underline {\underline{We \: know \: that:}}}}\\ So,A=30° and  \: B=30° \\ A \: is \: in \: 2nd \: quadrant  \: and \: \\  B \: is \: in \: 1st \: quadrant.</p><p> \\  \bold{In \: 1st \: quadrant \: all\:} \\  \bold{are \: positive.In \: 2nd \: quadrant \:} \: \\  \bold{sin \: and \: cosec \: are \: positive}

{ \bold{ \underline {\underline{To \: find:}}}}

tan(A+B) and that equals to

 \tan(A+B)  =  \frac{tanA+tanB}{1 - tanAtanB}  \\

{ \bold{ \underline {\underline{Values \: are:}}}}

 \tan(A)  =  \tan(30°)  =  \frac{1}{ \sqrt{3} }  \\

 \tan(B)  =  \tan(30°)  =  \frac{1}{ \sqrt{3}}

Because A = B = 30°

{ \bold{ \underline {\underline{Solution:}}}}

 \frac{ \tan(30) + \tan(30) }{1- \tan(30)  \tan(30) } = \frac{ \frac{1}{ \sqrt{3} } +  \frac{1}{ \sqrt{3} }  }{1 -  \frac{1}{ \sqrt{3}  }  \times  \frac{1}{ \sqrt{3} } }  \\  =  \frac{ \frac{2}{ \sqrt{3} } }{1 -  \frac{1}{ \sqrt{9} } }  =  \frac{ \frac{2}{ \sqrt{3} } }{1 -  \frac{1}{3} }  =  \frac{ \frac{2}{ \sqrt{3} } }{ \frac{3 - 1}{3} }  =  \frac{ \frac{2}{ \sqrt{3} } }{ \frac{2}{3} }  \\   \implies{} \frac{3}{ \sqrt{3} }  =  \sqrt{3} </p><p>

(or) you can do directly like this:

 \tan(A + B)  =  \tan(30 + 30)  \\  \implies{ \tan(60) } =  \sqrt{3}

Answered by SonicTheHero
0

Answer:

Answer for this question is square root of 3

Similar questions