If sin A = 1/2 then find rhe value of 1 - cos ^2 A
Answers
Answer:
1 - cos^2A = sin^2A
= (1/2)^2
= 1/4
Hence the answer is 1/4.....
GivEn:-
- SinA =
To find:-
- 1 - cos²A
SoluTion:-
GivEn that,
★ SinA =
Therefore,
- Perpendicular(P) = 1
- Hypotenuse(H) = 2
☆ DIAGRAM:
Now,
☯ Using Pythagoras theorem -
★ H² = P² + B²
2² = 1² + B²
4 = 1 + B²
4 - 1 = B²
3 = B²
☯ Taking sqrt both side -
Therefore, Base of right angled triangle is .
━━━━━━━━━━━━━━━
Now we have to find value of cosA,
cosA =
Therefore, cosA =
☯ Now, Put the value of cosA in -
1 - cos²A
Hence, value of 1 - cos²A is
━━━━━━━━━━━━━━━
Similarly,
We can also find the value of 1 - cos²A -
As we know that,
1 - cos² = sin²A
We have the value of, sinA =
Put value of sinA in -
Hence, We get the value of 1 - cos²A direct using identity.
▬▬▬▬▬▬▬▬▬▬
[tex]\boxed{ \begin{minipage}{7 cm} Fundamental Trigonometric Identities \\ \\ $\sin^2\theta + \cos^2\theta=1 \\ \\ 1+\tan^2\theta = \sec^2\theta \\ \\ 1+\cot^2\theta = \text{cosec}^2 \, \theta$ \end{minipage} }[/tex]