Math, asked by jaswanthloganathan20, 9 months ago

If sin A = 1/2 then find rhe value of 1 - cos ^2 A

Answers

Answered by priyanka7523
3

Answer:

1 - cos^2A = sin^2A

= (1/2)^2

= 1/4

Hence the answer is 1/4.....

Answered by SarcasticL0ve
10

GivEn:-

  • SinA = \sf \dfrac{1}{2}

To find:-

  • 1 - cos²A

SoluTion:-

GivEn that,

★ SinA = \sf \dfrac{1}{2} = \dfrac{P}{H}

Therefore,

  • Perpendicular(P) = 1
  • Hypotenuse(H) = 2

☆ DIAGRAM:

\setlength{\unitlength}{1.6cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{C}}\put(10.6,1){\large\sf{B}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(8.4,0.7){\sf{\large{Base}}}\put(7.4,2){\sf{\large{1}}}\put(9.3,2){\sf{\large{2}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\put(9.4,1.2){\sf\large{}}\end{picture}

Now,

☯ Using Pythagoras theorem -

★ H² = P² + B²

:\implies 2² = 1² + B²

:\implies 4 = 1 + B²

:\implies 4 - 1 = B²

:\implies 3 = B²

☯ Taking sqrt both side -

:\implies\sf \sqrt{3} = \sqrt{B^2}

:\implies\sf B = \sqrt{3}

Therefore, Base of right angled triangle is \bf \sqrt{3}.

━━━━━━━━━━━━━━━

Now we have to find value of cosA,

:\implies cosA = \sf \dfrac{B}{H}

Therefore, cosA = \sf \dfrac{ \sqrt{3}}{2}

☯ Now, Put the value of cosA in -

:\implies 1 - cos²A

:\implies\sf 1 - \bigg( \dfrac{ \sqrt{3}}{2} \bigg)^2

:\implies\sf 1 - \dfrac{3}{4}

:\implies\sf \dfrac{4 - 3}{4}

:\implies\sf \dfrac{1}{4}

\dag Hence, value of 1 - cos²A is \sf \dfrac{1}{2}

━━━━━━━━━━━━━━━

Similarly,

We can also find the value of 1 - cos²A -

As we know that,

1 - cos² = sin²A \qquad\lgroup\bigg\bf sin^2A + cos^2A = 1 \bigg\rgroup

We have the value of, sinA = \sf \dfrac{1}{2}

Put value of sinA in -

:\implies\sf 1 - cos^2A = sin^2

:\implies\sf 1 - cos^2A = \bigg( \dfrac{1}{2} \bigg)

:\implies\sf 1 - cos^2A = \dfrac{1}{4}

\dag Hence, We get the value of 1 - cos²A direct using identity.

▬▬▬▬▬▬▬▬▬▬

[tex]\boxed{ \begin{minipage}{7 cm} Fundamental Trigonometric Identities \\ \\ $\sin^2\theta + \cos^2\theta=1 \\ \\ 1+\tan^2\theta = \sec^2\theta \\ \\ 1+\cot^2\theta = \text{cosec}^2 \, \theta$ \end{minipage} }[/tex]

▬▬▬▬▬▬▬▬▬▬

Similar questions