If sin A = 1/2, then the value of cot A is
(A) √3
(B) 1/√3
(C) √3/2
(D) 1
Answers
Answered by
18
Given :-
- sinA = 1/2
We need to find :-
- cotA = ?
Solution :-
♦ Method 1 :-
First finding cosA using first trigonometric identity
• sin²A + cos²A = 1
By simplifying ,
• cosA = ± √1 - sin²A
Substituting the value of sinA
➸ cosA = ± √ 1 - [ 1/2 ]²
➸ cosA = ± √ 1 - 1²/2²
➸ cosA = ± √ 1 - 1/4
➸ cosA = ± √ 3/4
➸ cosA = √3/√4
➸ cosA = √3/2
Now finding cotA
• cotA = cosA/sinA
➮ cotA = [ √3 / 2 ]/ [ 1/2 ]
➮ cotA = √3/1
➮ cotA = √3
♦ Method 2 :-
sinA = 1/2
Substituting ,
Substituting 1/2 = sin30°
• sinA = sin30°
By comparing
• A = 30°
Now substituting the value of A in cotA
→ cotA
→ cot30°
→ cotA = √3
Hence , cotA = √3 . So option (A) is your answer
Answered by
42
If sin A = 1/2, then the value of cot A is
Given
- SinA = 1/2
- So P =1 and B =2
Find
- Cot A= ?
Formula used
H^2 = B^2 +P^2
Now we know that
cot A = B/P
so Cot A = √3
______________________
_____________________
Similar questions