Math, asked by basantikerai86, 5 months ago

If sin A = 1/2, then the value of cot A is
(A) √3
(B) 1/√3
(C) √3/2
(D) 1​

Answers

Answered by ItzArchimedes
18

Given :-

  • sinA = 1/2

We need to find :-

  • cotA = ?

Solution :-

Method 1 :-

First finding cosA using first trigonometric identity

sin²A + cos²A = 1

By simplifying ,

cosA = ± 1 - sin²A

Substituting the value of sinA

➸ cosA = ± √ 1 - [ 1/2 ]²

➸ cosA = ± √ 1 - 1²/2²

➸ cosA = ± √ 1 - 1/4

➸ cosA = ± √ 3/4

➸ cosA = √3/√4

cosA = 3/2

Now finding cotA

cotA = cosA/sinA

➮ cotA = [ √3 / 2 ]/ [ 1/2 ]

➮ cotA = √3/1

cotA = 3

Method 2 :-

sinA = 1/2

Substituting ,

Substituting 1/2 = sin30°

sinA = sin30°

By comparing

A = 30°

Now substituting the value of A in cotA

→ cotA

→ cot30°

cotA = 3

Hence , cotA = 3 . So option (A) is your answer

Answered by Anonymous
42

 \bf \sf \implies \huge  \{question \}

If sin A = 1/2, then the value of cot A is

Given

  • SinA = 1/2
  • So P =1 and B =2

Find

  • Cot A= ?

Formula used

H^2 = B^2 +P^2

 \bf \large \pink solution

 \bf \ { H }^{2}   =  { \: P\: }^{2}  +  {  B   }^{2}

 {2}^{2}  =  {1}^{2}  +  {   B }^{2}

B =  \sqrt{3}

Now we know that

cot A = B/P

so Cot A = 3

______________________

_____________________

Similar questions