Math, asked by nandadeepatutorial20, 6 months ago

If sin a = 1/2and a is an acute angle, find the value of
(3 cos a - 4cos cube a).​

Answers

Answered by Anonymous
4

Solution:-

GIVEN:-

 \rm \implies \sin a \:  =  \dfrac{1}{2}

TO FIND THE VALUE OF

  \rm \implies \: 3 \cos a -  {4} \cos {}^{3} a

NOW TAKE

\rm \implies \sin a \:  =  \dfrac{1}{2}  =  \dfrac{p}{h}

WE HAVE

 \rm \implies \: p = 1,h = 2 \: and \: b =  x

USING PYTHAGORAS THEOREM

 \rm \implies \:  {h}^{2}  =  {b}^{2}  +  {p}^{2}

 \rm \implies \:  {2}^{2}  =  {b}^{2}   +  {1}^{2}

 \rm \implies \: 4 =   {b}^{2}  + 1

 \rm \implies \:  {b}^{2}  = 3

 \rm \implies \: b =  \sqrt{3}

NOW WE GET

\rm \implies \: p = 1,h = 2 \: and \: b =   \sqrt{3}

SO

 \rm \implies \:  \cos  a =  \dfrac{ \sqrt{3} }{2}  =  \dfrac{b}{h}

WE HAVE TO FIND THE VALUE OF

\rm \implies \: 3 \cos a -  {4} \cos {}^{3} a

 \rm \implies \: 3 \times  \dfrac{ \sqrt{3} }{2}  - 4 \times  \bigg( \dfrac{ \sqrt{3} }{2}  \bigg)^{3}

 \rm \implies \:  \dfrac{3 \sqrt{3} }{2}  - 4 \times  \dfrac{3 \sqrt{3} }{8}

\rm \implies \:  \dfrac{3 \sqrt{3} }{2}  -  \cancel4 \times  \dfrac{3 \sqrt{3} }{ \cancel8}

 \rm \implies \:  \dfrac{3 \sqrt{3} }{2}  -  \dfrac{3 \sqrt{3} }{2}  = 0

ANSWER IS 0

Similar questions