If sin A=1÷3 then find other trigonometric ratios
Answers
Answered by
32
sin a = 1/3= p/h
for finding base,
using pythagoreus theorem,
h^2=p^2+b^2
3^2=1^2+b^2
9=1+b^2
9-1=b^2
√8=b
now cos =b/h=√8/3
tan =p/b=1/√8=√8/8
cosec=h/p=3
sec=h/b=3/√8=3√8/8
cot=b/p=√8
for finding base,
using pythagoreus theorem,
h^2=p^2+b^2
3^2=1^2+b^2
9=1+b^2
9-1=b^2
√8=b
now cos =b/h=√8/3
tan =p/b=1/√8=√8/8
cosec=h/p=3
sec=h/b=3/√8=3√8/8
cot=b/p=√8
Answered by
28
Sin A= 1/3
Here, sin = Perpendicular/hypotenuse
So, by Pythagoras theorem,
H^2= P^2 + B^2
3^2= 1^2 +B^2
9 =1 +B^2
B^2= 8
B=√8 cm
Now, cos A = B/H
= √8/3
Tan A=P/B
=1/√8
Sec A=H/B
= 3/√8
Cosec A = H/P
=3/1
=3
Cot A = B/P
= √8/1
=√8
Hope it'll be helpful to you friend...
Here, sin = Perpendicular/hypotenuse
So, by Pythagoras theorem,
H^2= P^2 + B^2
3^2= 1^2 +B^2
9 =1 +B^2
B^2= 8
B=√8 cm
Now, cos A = B/H
= √8/3
Tan A=P/B
=1/√8
Sec A=H/B
= 3/√8
Cosec A = H/P
=3/1
=3
Cot A = B/P
= √8/1
=√8
Hope it'll be helpful to you friend...
Similar questions