Math, asked by susmitachakravorty07, 3 months ago

If sin A = 1/4, then tan A/2
+ cot A/4 =​

Answers

Answered by legend1560
1

Answer:

= 17/16 cosθ. please make sure it is correct. sorry for the delay.

Attachments:
Answered by brokendreams
1

\text{For } sinA = \dfrac{1}{4}  \Rightarrow \dfrac{tan A}{2} + \dfrac{cot A}{4} =  \dfrac{17}{4\sqrt{15} }

Step-by-step explanation:

Given: sinA = \frac{1}{4}

To Find: the value of \frac{tan A}{2} + \frac{cot A}{4}

Solution:

  • Finding the value of \frac{tan A}{2} + \frac{cot A}{4}

We have the expression \frac{tan A}{2} + \frac{cot A}{4} such that we can write,

\Rightarrow \dfrac{tan A}{2} + \dfrac{cot A}{4}

\Rightarrow \dfrac{1}{2} \Big( \dfrac{sin A}{cos A} \Big) + \dfrac{1}{4} \Big( \dfrac{cos A}{sin A} \Big)

\Rightarrow  \dfrac{2sin^2 A + cos^2A}{4 \ sinA \ cos A}

\Rightarrow  \dfrac{sin^2 A + (sin^2 A + cos^2A)}{4 \ sinA \ cos A}

\Rightarrow  \dfrac{sin^2 A + 1}{4 \ sinA \ cos A} \ \ \ \ \because sin^2 A + cos^2A = 1

\Rightarrow  \dfrac{sin^2 A + 1}{4 \ sinA \ ( \sqrt{1 - sin^2 A} )} \ \ \ \ \because cosA = \sqrt{1 - sin^2 A}

Now, substituting the given value of sin A, we get,

\Rightarrow  \dfrac{(\frac{1}{4})^{2}  + 1}{4 \ (\frac{1}{4}) \ ( \sqrt{1 - (\frac{1}{4})^{2}} )}

\Rightarrow \dfrac{17}{4 \sqrt{15} }

Hence, for sinA = \dfrac{1}{4}  \Rightarrow \dfrac{tan A}{2} + \dfrac{cot A}{4} =  \dfrac{17}{4\sqrt{15} }

Similar questions