Math, asked by yatharthkushwaha97, 9 months ago

if sin A=12/13 and (2 sinA-k cos A) /(4sinA-9cosA) =3 find the value of k​

Answers

Answered by rajeevr06
1

Answer:

 \sin( \alpha )  =  \frac{12}{13}  =  \frac{p}{h}

So,

b =  \sqrt{ {13}^{2} -  {12}^{2}  }  =  \sqrt{25}  = 5

i.e,

 \cos( \alpha )  =  \frac{5}{13}

now putting the value of Sin & Cos in question

 \frac{2 \sin\alpha  - k \: cos \:  \alpha  }{4sin \:  \alpha  - 9 \: cos \:  \alpha }  =  \frac{2 \times  \frac{12}{13} - k \times  \frac{5}{13}  }{4 \times  \frac{12}{13} - 9 \times  \frac{5}{13}  }  = 3

 \frac{24 - 5k}{48 - 45}  = 3

24 - 5k = 3 \times 3 = 9

5k = 24 - 9 = 15

k =  \frac{15}{5}  = 3 \:  \:  \: ans.

Similar questions