Math, asked by jaidudi000, 7 months ago

if sin a =15/17, cos B=12/13, find the value of sin (a+b), cos (a-b) and tan (a+b) , where a, b are+ ve acute angles​

Answers

Answered by Anonymous
42

 \huge\boxed{\fcolorbox{black}{pink}{Answer}}

Given

 \sin(A)  =  \frac{15}{17}

 \cos(B)  =  \frac{12}{13}

To Find

value of :-

 \sin(a + b)

 \cos(a - b)

 \tan(a + b)

 \huge{solution}

Using sin²A + Cos²A =1 we get

Cos²A = 1-sin²A

◻ \:  \cos ^{2} (A)  = 1 -  \frac{225}{289}  =  \frac{289 - 225}{289}  =  \frac{64}{289}  =  \frac{8}{17}

  • [Side can't negative ]

Sin²B = 1-cos²B

◻ \sin ^{2} (B)  = 1 -  \frac{144}{169}  = \frac{169 - 144}{169}  =  \frac{25}{169}  =  \frac{5}{13}

  • [Side can't negative ]

 \huge{therfore}

◻\sin(A + B)  =  \sin(A)  \cos(B)  +  \cos(A)  \sin(B)

◻ \frac{15}{17}  \times  \frac{12}{13}  +  \frac{8}{17}  \times  \frac{5}{13}

◻ \frac{180}{221}  +  \frac{40}{221}

◻ \frac{220}{221}

◻\cos(A - B)  =  \cos(A)  \cos(B) -  \sin(A)   \sin(B)

◻ \frac{8}{17}  \times  \frac{12}{13}  -  \frac{15}{47}  \times  \frac{5}{13}

◻ \frac{96}{221}  -  \frac{75}{221}

◻ \frac{21}{221}

◻ \tan(A)  =  \frac{ \sin(A) }{A}

◻  \frac{ \frac{15}{17} }{ \frac{8}{17} }  =  \frac{15}{8}

◻ \tan(B)  =   \frac{ \sin(B) }{ \cos(B) }

◻  \frac{ \frac{5}{13} }{ \frac{12}{13} }  =  \frac{5}{12}

◻ \tan(A + B)

◻\frac{( \tan(A)  +  \tan(B) }{1 - ( \tan(A)    \tan(B) }

◻ \frac{( \frac{15}{8}  +  \frac{15}{12}) }{1 - ( \frac{15}{8}  )(  \frac{15}{12}) }

◻ \frac{( \frac{ \frac{45}{10}}{24}  )}{( \frac{ \frac{96}{75} }{96}) }  =  \frac{55}{24}  \times  \frac{96}{21}  =  \frac{210}{21}  = 10

Similar questions