Math, asked by ranjitkumarmodi3669, 11 months ago

If sin A=1upon3,evaluate cos A cosec A+tan A sac A

Answers

Answered by LovelyG
8

Answer:

Given that ;

 \rm \sin(A)  =  \dfrac{1}{3}  =  \dfrac{perpendicular}{hypotenuse}

So, here we have -

  • Perpendicular = 1
  • Hypotenuse = 3

We need to find base. We can use Pythagoras theorem here.

 \rm Base {}^{2}  = h {}^{2}  - p {}^{2}  \\  \\ \rm Base {}^{2}  = (3) {}^{2}  - (1) {}^{2}  \\  \\ \rm Base {}^{2}  = 9 - 1 \\  \\ \rm Base =  \sqrt{8}  = 2 \sqrt{2}

\rule{300}{2}

 \rm \cos(A)  =  \frac{b}{h}  =  \frac{2 \sqrt{2} }{3}  \\  \\ \rm  \cosec(A)  =  \frac{h}{p}  =  \frac{3}{1}  = 3

And,

 \rm \tan(A)  =  \frac{p}{b}  =  \frac{1 }{2 \sqrt{2} }  \\  \\ \rm  \sec(A)  =  \frac{h}{b}  =  \frac{3}{2 \sqrt{2 } }

Thus,

 \rm  \cos(A)  \cosec(A)  +  \tan(A)  \sec(A)  \\  \\  \frac{2 \sqrt{2} }{3 }   \times 3 +  \frac{1}{2 \sqrt{2} }  \times  \frac{3}{2 \sqrt{2} }  \\  \\ \implies 2 \sqrt{2}  +  \frac{3}{8}  \\  \\ \red{\boxed{ \therefore \bf \: \frac{16 \sqrt{2} + 3 }{8}}}


BrainlyGod: i haven't forgotten you
BrainlyGod: :)
BrainlyGod: Nice Answer
Anonymous: Awesome :)
Answered by Anonymous
83

Answer =>

 \mathfrak{\huge{\underline{\boxed{\red{\frac{16 \sqrt{2} + 3}{8}}}}}}

Explanation =>

Given :-

 Sin (A)  = \frac{1}{3} =  \frac{Perpendicular}{hypotenuse}

So,

Perpendicular = 1

Hypotenuse = 3

____________________________

We have to find base by Pythagoras theorem :-

(H)² = (B)² + (P)²

____________________________

So,

B² = -

______________[Put values]

= (3)² - (1)²

= 9-1

= 8

B = ±8

B = ±2×2×2

B = 22

____________________________

___________________

_________

We know that :-

  • Cos(A) = b/h => 22/3
  • Cosec(A) = h/p => 3
  • Tan(A) = p/b =>1/22
  • Sec(A)= h/b => 3/22

A.T.Q

Cos(A) * Cosec(A) + Tan(A)*Sec(A)

__________________________

______________________

__Put Values _______

2√2/3 * 3 + 1/2√2 * 3/2√2

» 2√2 + 3/8

» 162 + 3 / 8

____________[Answer]

Remember :-

  • Sin A = p/h
  • Cos A = b/h
  • Tan A = p/b

And

  • Cosec A = h/p
  • Sec A = h/b
  • Cot A = b/p

BrainlyGod: good
Similar questions