Math, asked by prathiksha1820, 1 year ago

If sin θ = a^2-b^2/a^2+b^2, then find cosec θ+ cot θ (a) a/a+b (b) b+a/b-a (c) a^2/a+b (d) a+b/a-b

Answers

Answered by Pitymys
0

We have the given expression

 \csc \theta +\cot \theta=\frac{1+\cos \theta}{\sin \theta} \\<br />\csc \theta +\cot \theta=\frac{2\cos^2 ( \theta/2)}{2\sin ( \theta/2)\cos ( \theta/2)} \\<br />\csc \theta +\cot \theta=\cot  ( \theta/2)

use the identity,

 \sin \theta = \frac{2\tan  ( \theta/2)}{1+\tan^2  ( \theta/2)} =\frac{2\cot  ( \theta/2)}{1+\cot^2  ( \theta/2)}  \\

Given

 \sin \theta =\frac{a^2-b^2}{a^2+b^2} =\frac{2\cot  ( \theta/2)}{1+\cot^2  ( \theta/2)} \\<br />(a^2-b^2)(1+\cot^2  ( \theta/2))=2(a^2+b^2)\cot  ( \theta/2)\\<br />(a^2-b^2)\cot^2  ( \theta/2)-2(a^2+b^2)\cot  ( \theta/2)+a^2-b^2=0\\<br />\cot  ( \theta/2)=\frac{2(a^2+b^2) \pm \sqrt{4(a^2+b^2)^2-4(a^2-b^2)^2}}{2(a^2-b^2)}\\<br />\cot  ( \theta/2)=\frac{2(a^2+b^2) \pm \sqrt{16a^2b^2}}{2(a^2-b^2)}\\<br />\cot  ( \theta/2)=\frac{(a^2+b^2) \pm 2ab}{a^2-b^2}\\<br />

 \cot  ( \theta/2)=\frac{(a^2+b^2) + 2ab}{a^2-b^2},\frac{(a^2+b^2) - 2ab}{a^2-b^2}\\<br />\cot  ( \theta/2)=\frac{(a+b) ^2}{a^2-b^2},\frac{(a-b)^2}{a^2-b^2}\\<br />\cot  ( \theta/2)=\frac{a+b}{a-b},\frac{a-b}{a+b}

The correct option is (d)

Similar questions