Math, asked by urvashipabaripabari, 2 months ago

If sin=a^2-b^2/a^2+b^2 then find the other five trigonometric ratios​

Answers

Answered by Anonymous
15

As We know that sin ∅ = a² - b²/a² + b² .

 \bigstar \  {\underline{\sf{ Concept }}}

The most important task of trigonometry to find the remaining sides and angles of a triangle when some of its sides and angles are given.

 \circ \ {\underline{\boxed{\sf\orange{ Sin \ \theta = \dfrac{Perpendicular}{Hypotenuse} }}}}

According to Question, We have that:

 \colon\implies{\sf{ sin \ \theta = \dfrac{a^2-b^2}{a^2+b^2} }} \\

So, Draw a right Triangle & Right angled at B as such that.

  • Perpendicular = a² - b²

  • Hypotenuse = a² + b²

  •  {\sf{ \angle BAC = \theta }}

By Using Pythagoras theorem to Find the desired results as:

 \colon\implies{\tt{ AC^2 = AB^2 + BC^2 }} \\ \\ \\ \colon\implies{\tt{ (a^2 + b^2 )^2 = AB^2 + (a^2 - b^2 )^2 }} \\ \\ \\ \colon\implies{\tt{ AB^2 = (a^2 + b^2 )^2 - (a^2 - b^2 )^2 }} \\ \\ \\ \colon\implies{\tt{ AB^2 = (a^4 + b^4 + 2a^2b^2 ) - (a^4 + b^4 - 2a^2b^2 ) }} \\ \\ \\ \colon\implies{\tt{ AB^2 = 4a^2b^2 = (2ab)^2 }} \\ \\ \\ \colon\implies{\tt{ AB = 2ab }}

When we consider the trigonometric ratios of  {\sf{ \angle BAC = \theta }}  , we have:

  • Base = AB = 2ab

  • Perpendicular = BC = a² - b²

  • Hypotenuse = AC = a² + b²

As we also know that we have to Find the other Five Trigonometric ratio as:

 \circ \ {\underline{\boxed{\sf{ cos \ \theta = \dfrac{Base}{Hypotenuse} = \dfrac{2ab}{a^2+b^2} }}}} \\

 \circ \ {\underline{\boxed{\sf{ tan \ \theta = \dfrac{Perpendicular}{Base} = \dfrac{a^2-b^2}{2ab} }}}} \\

 \circ \ {\underline{\boxed{\sf{cosec \ \theta = \dfrac{Hypotenuse}{Perpendicular} = \dfrac{a^2+b^2}{a^2-b^2} }}}} \\

 \circ \ {\underline{\boxed{\sf{ sec \ \theta = \dfrac{Hypotenuse}{Base} = \dfrac{a^2+b^2}{2ab} }}}} \\

 \circ \ {\underline{\boxed{\sf{ cot \ \theta = \dfrac{Base}{Perpendicular} = \dfrac{2ab}{a^2-b^2} }}}} \\

  • It should be noted that sin ∅ is an abbreviation for " sine of angle ∅ ", It is not the Product of sin and ∅.
Attachments:
Similar questions