Math, asked by gunjan38, 1 year ago

If sin A+2 cos A= 1 then prove 2 sin A - cosA=2

Answers

Answered by siddhartharao77
84
Given that Sin A + 2 cos A = 1

Squaring on both sides, we get

(sin A + 2 cos A)^2 = 1

We know that (a+b)^2 = a^2 + b^2 + 2ab.

(sin^2 A + 4 cos^2 A + 4 sin A cos A) = 1

4 cos^2 A + 4 sin A cos A = 1 - sin^2 A

4 cos^2 A + 4 sin A cos A = cos^2 A

3 cos^2 A + 4 sin A cos A = 0    

3 cos^2 A = - 4 sin A cos A  ---- (1).


Given 2 sin A - cos A 

Squaring on both sides, we get

(2 sin A - cos A)^2 = 4 sin^2 A + cos^2 A - 4 sin A cos A

                               = 4 sin^2 A + cos^2 A + 3 cos^2 A

                               = 4 sin^2 A + 4 cos^2 A

                               = 4(sin^2 A + cos^2 A)

                               = 4.

2 sin A - cos A = 2.


LHS  = RHS.


Hope this helps!

priyanka220: this helped me a lot
Answered by SamGodson
31

Answer:


Step-by-step explanation:

Here you go : )


Hope it helps

Sorry for VERY LATE ANSWER

Image is the Answer

Wait for some time as the loading takes some time

Attachments:
Similar questions