If sin A+2 cos A= 1 then prove 2 sin A - cosA=2
Answers
Answered by
84
Given that Sin A + 2 cos A = 1
Squaring on both sides, we get
(sin A + 2 cos A)^2 = 1
We know that (a+b)^2 = a^2 + b^2 + 2ab.
(sin^2 A + 4 cos^2 A + 4 sin A cos A) = 1
4 cos^2 A + 4 sin A cos A = 1 - sin^2 A
4 cos^2 A + 4 sin A cos A = cos^2 A
3 cos^2 A + 4 sin A cos A = 0
3 cos^2 A = - 4 sin A cos A ---- (1).
Given 2 sin A - cos A
Squaring on both sides, we get
(2 sin A - cos A)^2 = 4 sin^2 A + cos^2 A - 4 sin A cos A
= 4 sin^2 A + cos^2 A + 3 cos^2 A
= 4 sin^2 A + 4 cos^2 A
= 4(sin^2 A + cos^2 A)
= 4.
2 sin A - cos A = 2.
LHS = RHS.
Hope this helps!
Squaring on both sides, we get
(sin A + 2 cos A)^2 = 1
We know that (a+b)^2 = a^2 + b^2 + 2ab.
(sin^2 A + 4 cos^2 A + 4 sin A cos A) = 1
4 cos^2 A + 4 sin A cos A = 1 - sin^2 A
4 cos^2 A + 4 sin A cos A = cos^2 A
3 cos^2 A + 4 sin A cos A = 0
3 cos^2 A = - 4 sin A cos A ---- (1).
Given 2 sin A - cos A
Squaring on both sides, we get
(2 sin A - cos A)^2 = 4 sin^2 A + cos^2 A - 4 sin A cos A
= 4 sin^2 A + cos^2 A + 3 cos^2 A
= 4 sin^2 A + 4 cos^2 A
= 4(sin^2 A + cos^2 A)
= 4.
2 sin A - cos A = 2.
LHS = RHS.
Hope this helps!
priyanka220:
this helped me a lot
Answered by
31
Answer:
Step-by-step explanation:
Here you go : )
Hope it helps
Sorry for VERY LATE ANSWER
Image is the Answer
Wait for some time as the loading takes some time
Attachments:
Similar questions