if sin A=20/29 than find cos A. show stape by stape ans
Answers
21/29
BTW It's 'step' not stape
Answer :
cos \thetaθ = \frac{21}{29}
29
21
It is easy to show the trigonometry functions as ratios which involves the sides of a right-angle triangle, whose sides are called the adjacent side, the opposite side and the hypotenuse marked as a, b and c respectively in the figure.
1. sine = sin \thetaθ = \frac{b}{c}
c
b
2. cosine = cos \thetaθ = \frac{a}{c}
c
a
3. tangent = tan \thetaθ = \frac{b}{a}
a
b
4. cotangent = cot \thetaθ = \frac{1}{tan\:\theta}
tanθ
1
5. secant = sec \thetaθ = \frac{1}{cos\:\theta}
cosθ
1
6. cosecant = cosec \thetaθ = \frac{1}{sin\:\theta}
sinθ
1
Given,
sin \thetaθ = \frac{20}{29}
29
20
= \frac{b}{c}
c
b
\implies a=\sqrt{c^{2}-b^{2}}⟹a=
c
2
−b
2
\implies\sqrt{29^{2}-20^{2}}⟹
29
2
−20
2
\implies\sqrt{441}⟹
441
\implies 21⟹21
Now, cos \thetaθ = \frac{a}{c}
c
a
= \frac{21}{29}
29
21