Math, asked by ranjiniranjini282005, 10 months ago

if sin A = 21÷29.evaluate secA/tanA-sinA​

Answers

Answered by RvChaudharY50
88

{\huge\bf{\mid{\overline{\underline{correct\:Question}}}\mid}}

  • if SinA = 21/29 , we have to Find secA/(tanA - sinA) .

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • Sin A = Perpendicular/Base = P/B
  • secA = Hypotenuse / Base = H/B
  • TanA = Perpendicular/Base = P/B

\large\star{\underline{\tt{\red{Answer}}}}\star

we know that ,,,

 \green{\large\boxed{\bold{Hypotenuse^{2}  = Perpendicular^{2}  + Base^{2} }}}

since given SinA = Perpendicular/Hypotenuse = 21/29

we have ,

→ Perpendicular = P = 21

→ Hypotenuse = H = 29

Putting values we get,,,

\red{\boxed\implies} \:  {29}^{2}  =  {21}^{2}  + B^{2}  \\  \\ \red{\boxed\implies} \: B^{2}  \:  =  {29}^{2}  -  {21}^{2}  \\  \\ \red{\boxed\implies} \: B^{2} \:  = 841 - 441 \\  \\ \red{\boxed\implies} \: B^{2} \:  = 400 \\  \\ \red{\boxed\implies} \:B =  \: 20

Hence, we have now ,

Sec A = H/B = 29/20

→ Tan A = P/B = 21/20

→ sin A = P/H = 21/29

Putting values in Question we get,,,

  \blue{\frac{ \sec(A)}{ \tan(A) -  \sin(A)  }}  =   \green{\frac{ \frac{29}{20} }{ \frac{21}{20} -  \frac{21}{29}}}  \\  \\ \red{\boxed\implies} \: \:  \:  \:  \:  \:   \red{\large\boxed{\bold{ \frac{841}{189} }}}

\large\underline\textbf{Hope it Helps You.}

Similar questions