Math, asked by ferisha1809, 1 year ago

if sin A=√3/2 and cos B=√3/2, find the value of: tanA-tanB/1+tan A tan B

Answers

Answered by RajeshKumarNonia
12
SinA=Sin60 => A=60
CosB=Cos30 =>B=30
Now the given expression can be compactly written as
Tan(A-B) as it is a formula.
Therefore Tan(60-30)=Tan30=1/root3
Answered by harendrachoubay
10

The value of \dfrac{\tan A-\tan B}{1+\tan A \tan B}=\dfrac{1}{\sqrt{3}}.

Step-by-step explanation:

We have,

\sin A=\dfrac{\sqrt{3}}{2} and \cos B=\dfrac{\sqrt{3}}{2}

To find, the value of \dfrac{\tan A-\tan B}{1+\tan A \tan B}=?

\sin A=\dfrac{\sqrt{3}}{2}

\sin A=\sin 60 [ ∵ \sin 60=\dfrac{\sqrt{3}}{2}]

⇒ A = 60°

Also,

\cos B=\dfrac{\sqrt{3}}{2}

\cos B=\cos 30 [ ∵ \cos 30=\dfrac{\sqrt{3}}{2}]

⇒ B = 30°

\dfrac{\tan A-\tan B}{1+\tan A \tan B}

=\dfrac{\tan 60-\tan 30}{1+\tan 60 \tan 30}

=\dfrac{\sqrt{3} -\dfrac{1}{\sqrt{3}}}{1+\sqrt{3}.\dfrac{1}{\sqrt{3}}}

[ ∵ \tan 60=\sqrt{3} and \tan 30=\dfrac{1}{3}]

=\dfrac{\dfrac{3-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+\sqrt{3}}{\sqrt{3}}}

=\dfrac{\dfrac{3-1}{\sqrt{3}}}{\dfrac{2\sqrt{3}}{\sqrt{3}}}

=\dfrac{2}{2\sqrt{3}}

=\dfrac{1}{\sqrt{3}}

Hence, the value of \dfrac{\tan A-\tan B}{1+\tan A \tan B}=\dfrac{1}{\sqrt{3}}

Similar questions