Math, asked by 10A01Aadhya, 9 months ago

If sin A = √3/2, find the value of 2 cot^2 A -1.

Answers

Answered by Anonymous
2

Question:-

 \bf \:  \sin(A)  =  \frac{ \sqrt{3} }{2}  \:  \:  \:  \:  \:  \:  \: find \: the \: value \: of \: 2 \cot {}^{2} (A)  - 1

Solution:-

Given,

\bf \:  \sin(A)  =  \frac{ \sqrt{3} }{2}

We have find the value of

 \bf \: 2 \cot {}^{2} (A)  - 1

Trigonometry ratio

 \bf \:  \sin(A)   = \frac{ \sqrt{3}  }{2}  =  \frac{p}{h}

 \bf \:  \cot(A)  =  \frac{b}{p}

Now using pythagoras

h = 2 , p = √3 , b = ?

h² = p² + b²

( 2 )² = ( √3 )² + b²

4 = 3 + b²

4 - 3 = b²

b² = 1

b = 1

Value of cot ( A ) = 1 / √3

Now put the value on

 \bf \: 2 \cot {}^{2} (A)  - 1

we get ,

 \bf \: 2 \times ( \frac{1}{ \sqrt{3} } ) {}^{2}  - 1

 \bf \: 2 \times ( \frac{1}{{3} } ) {}^{}  - 1

 \bf \:  \frac{2}{3}  - 1

 \bf \frac{2 - 3}{3}

  \bf \: \frac{ - 1}{3}

 \boxed{ \orange{ \bf \: {Answer =  \frac{ - 1}{3} }}}

Similar questions