If sin A = 3/4, Calculate cos A
Answers
Answered by
2
Step-by-step explanation:
Given:-
Sin A= 3/4
To find:-
Calculate cos A
Solution:-
Given Sin A=3/4
on squaring both sides then
=>(Sin A)^2 = (3/4)^2
=>Sin^2 A = 9/16
=>1- Sin^2 A = 1-(9/16)
=>Cos^2 A=(16-9)/16
=>Cos^2 A=7/16
=>Cos A=√(7/16)
Cos A=√7/4
(or)
Sin A= 3/4
=>Opposite side to angle A / Hypotenuse =3/4
Let the opposite side = 3x
Hypotenuse =4x
By Pythagoras theorem
Opposite side ^2+ Adjacent side^2 =Hypotenuse^2
=>(3x)^2+Adajacent side^2=(4x)^2
=>9x^2+adajacent side^2=16x²
=>Adajacent side^2=16x^2-9x^2
=>adjacent side^2=7x^2
=>Adjacent side=√(7x^2)
Adjacent side =√7 x
Now,
Cos A= Adjacent side / Hypotenuse
=>Cos A= √7 x/4x
Cos A=√7/4
Answer:-
The value of Cos A=√7/4
Used formulae:-
- Sin A= Opposite side to angle A / Hypotenuse
- Cos A=Adjacent side to angle A / Hypotenuse
- Sin^2 A+ Cos^2 A=1
- Sin^2A= 1-Cos^2 A
Similar questions
Science,
2 months ago
English,
2 months ago
Math,
4 months ago
Social Sciences,
11 months ago
Math,
11 months ago