Math, asked by akansha3215, 1 year ago

if sin A= 3/4, calculate cos A and tan A​

Attachments:

Answers

Answered by kirisakichitogpb4udv
7

sin A=3/4

BC/AC=3/4

Let

BC=3x

AC=4x

(AC)^2=(AB)^2+(BC)^2

(4x)^2=(AB)^2+(3x)^2

16x^2-9x^2=(AB)^2

AB=root(7x)

cos A= AC/AC

=root(7x)/4x

=root(7)/4

tan A= BC/AB

=3x/root(7x)

=3/root(7)

Attachments:
Answered by Disha976
7

Given that,

  •  \rm { sin \: A = \dfrac{3}{4} }

We have to find,

  •  \rm { cos \: A \: and \: tan \: A }

Solution,

Here, we know that

 \rm { sin \: A =\dfrac{ 3}{4} = \dfrac{ Perpendicular}{Hypotenuse} }

Hence,

  •  \rm { Perpendicular = 3}
  •  \rm { Hypotenuse = 4}

_____________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2} + {P}^{2} }

 \rm { \leadsto {B}^{2} = {H}^{2} - {P}^{2} }

 \rm { \leadsto {B}^{2} = {4}^{2} - {3}^{2} }

 \rm { \leadsto {B}^{2} = 16 - 9 = 7}

 \rm\blue { \leadsto B = \sqrt{7} }

________________

  •  \rm { Hypotenuse = 4 }
  •  \rm { Base =  \sqrt{7}  }
  •  \rm { Perpendicular = 3 }

 \leadsto \rm\red{ cos \: A = \dfrac{ Base}{ Hypotenuse} = \dfrac{ \sqrt{7} }{4} }

 \:

 \leadsto \rm\red{ tan \: A = \dfrac{ Perpendicular}{ Base} =  \dfrac{ 3 }{\sqrt{7}} }

Similar questions