Math, asked by pushpaain, 7 months ago

 If sin A = 3/4, Calculate cos A and tan A.​

Answers

Answered by Anonymous
12

\Large{\underline{\underline{\mathfrak{\red{\bf{Solution}}}}}}

\Large{\underline{\mathfrak{\orange{\bf{Given}}}}}

  • sin A = 3/4

\Large{\underline{\mathfrak{\orange{\bf{Find}}}}}

  • Value of cos A
  • Value of tan A

\Large{\underline{\underline{\mathfrak{\red{\bf{Explanation}}}}}}

Using Some Formula

\star\tt{\blue{\:\sin\:A\:=\dfrac{(perpendicular)}{(Hypotenuse)}}}

\star\tt{\blue{\:\cos\:A\:=\:\dfrac{(Base)}{(Hypotenuse)}}}

\star\tt{\blue{\:\tan\:A\:=\:\dfrac{(Perpendicular)}{(Base)}}}

\star\tt{\blue{\:(Base)^2\:=\:(Hypotenuse)^2-(Perpendicular)^2}}

Assume that, Here a right PQR,

Where,

  • PQ = Perpendicular = 3
  • QR = Base
  • RP = Hypotenuse = 4

Now, First calculate Base (QR)

So,

➥ (QR)² = (RP)² - (PQ)²

➥ QR² = 4² - 3²

➥ QR² = 16 - 9

➥ QR² = 7

➥ QR = √7

Since, Base (QR) be 7 .

Now, Calculate Cos A ,

➥ cos A = Base/Hypotenuse

Or,

➥ cos A = QR/RP

Keep Value of Base & Hypotenuse

➥ cos A = √7/4

Now, Calculate tan A

➥ tan A = Perpendicular/Base

➥ tan A = PQ/QR

Keep Value of Perpendicular & base

➥ tan A = 3/√7

\Large{\underline{\underline{\mathfrak{\red{\bf{Hence}}}}}}

  • Value of cos A = √7/4
  • Value of tan A = 3/√7

________________

Answered by llSecreTStarll
5

\underline{\underline{\blue{\textbf{Step - By - Step - Explanation : -}}}}

To Find :

  • We need to calculate the value of cas A and tan A

Solution :

  • Sin A = 3/4

\green{\textbf{sin A = Perpendicular/Hypotenuse}}

  • perpendicular = 3
  • Hypotenuse = 4

By using Pythagoras theorem we have to find the value of base

Hypotenuse ² = base² + perpendicular ²

4² = b² + 3²

16 = b² + 9

b² = 16 - 9

b² = 7

b = √7

  • Value of Cos A :-

\green{\textbf{Cos A = Base/Hypotenuse}}

Cos A = √7/4

  • Value of tan A :-

\green{\textbf{tan A = Perpendicular/Base}}

tan A = 3/√7

   \large\dag  \large { \blue{\underline{\bf{Hence }}}}

\red{\textrm{Value of cas A is √7/4 and tan A is 3/√7}}

━━━━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Great :)
Similar questions