If sin A = 3/4, Calculate cos A and tan A.
Answers
Answered by
12
- sin A = 3/4
- Value of cos A
- Value of tan A
Using Some Formula
Assume that, Here a right ∆PQR,
Where,
- PQ = Perpendicular = 3
- QR = Base
- RP = Hypotenuse = 4
Now, First calculate Base (QR)
So,
➥ (QR)² = (RP)² - (PQ)²
➥ QR² = 4² - 3²
➥ QR² = 16 - 9
➥ QR² = 7
➥ QR = √7
Since, Base (QR) be √7 .
Now, Calculate Cos A ,
➥ cos A = Base/Hypotenuse
Or,
➥ cos A = QR/RP
Keep Value of Base & Hypotenuse
➥ cos A = √7/4
Now, Calculate tan A
➥ tan A = Perpendicular/Base
➥ tan A = PQ/QR
Keep Value of Perpendicular & base
➥ tan A = 3/√7
- Value of cos A = √7/4
- Value of tan A = 3/√7
________________
Answered by
5
To Find :
- We need to calculate the value of cas A and tan A
Solution :
- Sin A = 3/4
- perpendicular = 3
- Hypotenuse = 4
By using Pythagoras theorem we have to find the value of base
Hypotenuse ² = base² + perpendicular ²
4² = b² + 3²
16 = b² + 9
b² = 16 - 9
b² = 7
b = √7
- Value of Cos A :-
Cos A = √7/4
- Value of tan A :-
tan A = 3/√7
━━━━━━━━━━━━━━━━━━━━━━━━━
Anonymous:
Great :)
Similar questions