Math, asked by tl12, 8 months ago

If sin A =
3/4
, calculate cos A and tan A.​

Answers

Answered by abhishekchakra71
0

Answer:

Height =3 base=4

Hypotenuse = 2x(3) and (4)

=9+16

=25

25 square is 5

So cos A =base/Hypotenuse

=4/5

And tan A =base/height

=4/3

Answered by Anonymous
7

Answeram:-

Givenam:-

  •  \rm{sin \ A = \frac{3}{4}}

To Findam:-

  • \rm{ cos \ A} &
  •  \rm{tan \ A} .

Let ABC be the required triangle where angle C = 90°.

We know,

 \rm{sin∅ = \frac{Opposite \ side \ of \ ∅}{Hypotenuse}}

Ratio of opposite side of A and Hypotenuse = 3:4

Let common be =  k

So, Hypotenuse = 4k (AC)

Opposite side of A = 3k (BC)

Finding  AB :-

 {AB}^{2} = {AC}^{2} - {BC}^{2}

 \implies AB = \sqrt{{AC}^{2} - {BC}^{2}}

 \implies AB = \sqrt{{(4k)}^{2} - {(3k)}^{2}}

 \implies AB = \sqrt{{16k}^{2} - {9k}^{2}}

 \implies AB = \sqrt{{7k}^2}

 \implies AB = k \sqrt{7}

NOW,

Finding:-

 \underline{cos \ A :-}

We know,

\rm{ cos \ ∅ = \frac{Adjacent \ side \ of \ ∅}{Hypotenuse}}

So,

 \rm{\implies cos \ A = \frac{Adjacent \ side \ of \ A}{Hypotenuse}}

 \rm{\implies cos \ A = \frac{AB}{AC}}

 \rm{\implies cos \ A = \frac{k \sqrt{7}}{4k}}

 \rm{\implies cos \ A = \frac{\sqrt{7}}{4}}

 \underline{tan \ A:-}

We know,

 \rm{tan \ ∅ = \frac{Opposite \ side \ of \ ∅}{Adjacent \ side \ of \ ∅}}

So,

\rm{ tan \ A = \frac{Opposite \ side \ of \ A}{Adjacent \ side \ of \ A}}

\rm{ \implies tan \ A = \frac{BC}{AB}}

 \rm{\implies tan \ A = \frac{3k}{k \sqrt{7}}}

 \rm{\implies tan \ A = \frac{3}{\sqrt{7}}}

Thuz,

  •  tan \ A = \frac{3}{\sqrt{7}}
  •  cos \ A = \frac{\sqrt{7}}{4} .

Edi okay na?

Similar questions