Math, asked by CaptionIndia, 4 months ago

If sin A = 3/4, Calculate cos A and tan A.

Answers

Answered by vyshnav16
4

Answer:

Let, Side opposite to angle θ = BC =3k and Hypotenuse = AC =4k where, k is any positive integer So, by Pythagoras theorem, we can find the third side of a triangle ⇒ (AB)2 + (BC)2 = (AC)2 ⇒ (AB)2 + (3k)2 = (4k)2 ⇒ (AB)2 + 9k2 = 16k2 ⇒ (AB)2 = 16 k2 – 9 k2 ⇒ (AB)2 = 7 k2 ⇒ AB =k√7 So, AB = k√7 Now, we have to find the value of cos A and tan A We know that, if-sin-a-3-4-calculate-cos-a-and-tan-a

Attachments:
Answered by JashanR
61

\huge\tt\colorbox{blue}{\color{orange}{Answer}}

\huge{\underline{\underline{Given}}}

sin \: A =  \frac{3}{4}

\huge{\underline{\underline{To\: find:-}}}

cos \: A \:  \: and \: tan \: A

\huge{\underline{\underline{Proof:-}}}

We know that

 {cos}^{2} A = 1 -  \sin^{2} A

 {cos}^{2} A = 1 -  \frac{3}{4}  \times</p><p> \frac{3}{4}

 {cos}^{2} A = 1 -  \frac{9}{16}

 {cos}^{2} A =  \frac{16 - 9}{16}

 {cos}^{2} A =  \frac{7}{16}

cos \: A =  \sqrt{\frac{7}{16} }

cos \: A =   \frac{ \sqrt{7} }{4}

 { \tan} \:  A =  \frac{ \sin \:  A}{ \cos \:  A}

tan \: A =  \frac{3}{4}   \times  \frac{4}{\sqrt{7} }

tan \: A =  \frac{3}{ \sqrt{7} }

Similar questions