Math, asked by kartiksainikar98, 1 month ago

If sin A = 3/4 , calculate cos A and tan A. Solution:​

Answers

Answered by Yuseong
112

Step-by-step explanation:

As per the provided information in the given question, we have :

  •  \sf {\sin \: A = \dfrac{3}{4} } \\

We've been asked to calculate the value of cos A and tan A.

Here,

  \twoheadrightarrow \sf{\quad { \sin \: A = \dfrac{3}{4}\dots {(1)}}} \\

As, we know that,

  \twoheadrightarrow \sf{\quad { \sin \: \theta = \dfrac{P}{H} \dots {(2)} }} \\

So, here we can say that :

  \twoheadrightarrow \sf{\quad { \dfrac{P}{H} = \dfrac{3}{4} }} \\

Thus,

  • Perpendicular (P) = 3
  • Hypotenuse (H) = 4

C A L C U L A T I N G ⠀B A S E :

By using Pythagoras property,

↠⠀⠀⠀H² = B² + P²

↠⠀⠀⠀(4)² = B² + (3)²

↠⠀⠀⠀16 = B² + 9

↠⠀⠀⠀16 – 9 = B²

↠⠀⠀⠀7 = B²

↠⠀⠀⠀√7 = B

Therefore, base is 7. Now,

  \twoheadrightarrow \quad \boxed{\sf{ \cos \: A = \dfrac{B}{H}}} \\

Substitute the values.

  \twoheadrightarrow \sf{\quad { \cos \: A = \dfrac{\sqrt{7}}{4} }} \; \bigstar \\

Similarly,

  \twoheadrightarrow \quad \boxed{\sf{ \tan \: A = \dfrac{P}{B}}} \\

Substitute the values

  \twoheadrightarrow \sf{\quad { \tan \: A = \dfrac{3}{\sqrt{7}} }} \; \bigstar \\

⠀⠀⠀__________________________⠀

Learn More :⠀⠀⠀⠀

  \bull \sf{\quad { \sin \: \theta = \dfrac{P}{H} }} \\

  \bull \sf{\quad { \cosec \: \theta = \dfrac{H}{P} }} \\

  \bull \sf{\quad { \cos \: \theta = \dfrac{B}{H} }} \\

  \bull \sf{\quad { \sec \: \theta = \dfrac{H}{B} }} \\

  \bull \sf{\quad { \tan \: \theta = \dfrac{P}{B} }} \\

  \bull \sf{\quad { \cot \: \theta = \dfrac{B}{P} }} \\

Answered by Anonymous
30

Answer:

cos A = (√7)/4

tan A = 3/(√7).

Explanation:

We know, sin² A + cos² A = 1

=> cos A = √(1 - sin² A) = √(1 - 9/16) = √(7/16) = (√7)/4.

Now, tan A = sin A / cos A

=> tan A = 3/4 × 4/(√7) = 3/(√7).

Similar questions