Math, asked by Anonymous, 9 months ago

IF SIN A=3/4, CALCULATE COSA AND TAN A.

Answers

Answered by shashank3554
11
SinA = 3/4
Perpendicular = 3k/4k
~~~~~~~~~~~~
Hypotenuse

By Pythagoras Theorem ,
(H)^2 = (B)^2 +(P)^2
(4k)^2 = (B)^2 + (3k)^2
16k2 - 9k2 = B^2
Root7 k = B


CosA = B/H
CosA = Root7 k/4k
CosA = Root7 /4


TanA = P/B
TanA = 3k/Root7 k
TanA = 3/Root7
Answered by Anonymous
17

Given, sinA= </p><p>4</p><p>3

⇒ </p><p>DC</p><p>BC

 = </p><p>4</p><p>3

⇒BC=3k and AC=4k

where k is the constant of proportionality.

By Pythagoras theorem, we have

AB </p><p>2 =AC </p><p>2 −BC </p><p>2 =(4k) </p><p>2 −(3k) </p><p>2

=7k </p><p>2

⇒AB= </p><p>7

k

So, cosA=

AC/</p><p>AB

= </p><p>4</p><p>7

 k</p><p>	</p><p> = </p><p>√7/4

And tanA=

AB/</p><p>BC

=

7 </p><p>3

 = </p><p>3/√7

ooye aapne block kr diya ............

Similar questions