Math, asked by sudhir4696, 9 months ago

If sin A = 3/4 then find cos A ​

Answers

Answered by chahelsharmaPHOENIX
0

Step-by-step explanation:

Answer:

CosA = \frac{\sqrt{7}}{4}CosA=47

tanA=\frac{3}{\sqrt{7}}tanA=73

Step-by-step explanation:

Given sinA = \frac{3}{4}sinA=43

i ) cosA = \sqrt{1-sin^{2}A}cosA=1−sin2A

=\sqrt{1-(\frac{3}{4}})^{2}1−(43)2

/* From (1) */

=\sqrt{1-\frac{9}{16}}1−169

=\sqrt{\frac{16-9}{16}}1616−9

=\sqrt{\frac{7}{16}}167

=\frac{\sqrt{7}}{4}47 ---(1)

ii) tanA = \frac{SinA}{cosA}tanA=cosASinA

= \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}}4743

After cancellation, we get

= \frac{3}{\sqrt{7}}73 ---(2)

Therefore,

CosA = \frac{\sqrt{7}}{4}CosA=47

tanA=\frac{3}{\sqrt{7}}tanA=73

Answered by tamilan580
1

Answer:

Hope this is helpful

PLZ MARK IT AS" BRAINLIEST ANSWER"

Attachments:
Similar questions