If sin A = 3/4 then find cos A
Answers
Answered by
0
Step-by-step explanation:
Answer:
CosA = \frac{\sqrt{7}}{4}CosA=47
tanA=\frac{3}{\sqrt{7}}tanA=73
Step-by-step explanation:
Given sinA = \frac{3}{4}sinA=43
i ) cosA = \sqrt{1-sin^{2}A}cosA=1−sin2A
=\sqrt{1-(\frac{3}{4}})^{2}1−(43)2
/* From (1) */
=\sqrt{1-\frac{9}{16}}1−169
=\sqrt{\frac{16-9}{16}}1616−9
=\sqrt{\frac{7}{16}}167
=\frac{\sqrt{7}}{4}47 ---(1)
ii) tanA = \frac{SinA}{cosA}tanA=cosASinA
= \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}}4743
After cancellation, we get
= \frac{3}{\sqrt{7}}73 ---(2)
Therefore,
CosA = \frac{\sqrt{7}}{4}CosA=47
tanA=\frac{3}{\sqrt{7}}tanA=73
Answered by
1
Answer:
Hope this is helpful
PLZ MARK IT AS" BRAINLIEST ANSWER"
Attachments:
Similar questions