Math, asked by parmodsingla316, 5 months ago

If sin A=3/4
then find the value of tan A.

Answers

Answered by REDPLANET
9

\underline{\boxed{\bold{Question}}}  

↠ If sin A=3/4  then find the value of tan A.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Important\;Information}}}  

↠ Complementary angle are angles whose sum is 90°

❏ Here are certain relation of trigonometric functions related to complement of their functions.

       ✧ sinθ = cos(90° - θ)

       ✧ cosθ = sin(90° - θ)

       ✧ tanθ = cot(90° - θ)

       ✧ cotθ = tan(90° - θ)

       ✧ secθ = cosec(90° - θ)

       ✧ cosecθ = sec(90° - θ)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Given}}}

❏ sinA = 3/4

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Answer}}}

Let's Start !

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

➮ There are 2 method for solving this questions !

➮ Lets se then one by one !

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Method : 1

As we are given value of sinA we can find value of cosA by using suitable identity !

\boxed { \bold { \red { : \leadsto \; sin^{2} \theta + cos^{2} \theta = 1 } } }

\bold { \blue{:\implies \; (\frac{3}{4})^{2} + cos^{2} \theta = 1 }}

\bold { \red {:\implies \;  \frac{9}{16} + cos^{2} \theta = 1  }}

\bold { \blue {:\implies \;  cos^{2} \theta = 1 - \frac{9}{16}   }}

\bold { \blue {:\implies \;  cos^{2} \theta =\frac{7}{16}   }}

\boxed { \bold { \orange {:\implies \;  cos \theta =\frac{ \sqrt{7}} {4} }}}

As we know,

\bold { \pink {:\implies \;  tan\theta = \frac{sin \theta}{sin \theta}  }}

\bold { \green {:\implies \;  tan\theta = \frac{\frac{3}{4}}{\frac{\sqrt{7} }{4} }  }}

\boxed { \bold { \orange {: \implies \;  tan\theta = \frac{3}{\sqrt{7} } } } }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Method : 2

Let us consider a triangle given in attachment !

BC = 3k

AC = 4k

Now let's apply Pythagoras theorem,

\boxed { \bold { \red { : \leadsto \; AB^{2}  + BC^{2}  = AC^{2}  } } }

\bold { \blue { : \implies \; AB^{2}  + (3k)^{2}  = (4k)^{2}  } }

\bold { \red { : \implies \; AB^{2}  = 16k^{2}  - 9k^{2} } }

\bold { \blue { : \implies \; AB^{2}  = 7k^{2} } }

\boxed{  \bold { \orange { : \implies \; AB  = (\sqrt{7})k  } } }

\bold { \pink {:\implies \;  tan\theta = \frac{Opposite \;side}{Adjacent \;side}  }}

\bold { \orange {:\implies \;  tan\theta = \frac{BC}{AB} } }

\bold { \green {:\implies \;  tan\theta = \frac{3k}{(\sqrt{7})k }  }}

\boxed { \bold { \purple{:\implies \;  tan\theta = \frac{3}{(\sqrt{7}) }  } } }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\boxed{\bold{\therefore Value \; of \; tan\theta = \frac{3}{(\sqrt{7}) } } } }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Hope this helps u.../

【Brainly Advisor】

Attachments:
Similar questions