Math, asked by manikantanijampatnam, 3 months ago

If sin A = 4/5 find cos A + tan A.​

Answers

Answered by HiteshJoshi7
0

as we know

 \sin(e)  =  \frac{perpendicular}{hypotenuse}  =  \frac{4x}{5x}  =  \frac{4}{5}

so , by Pythagoras theorem

H² = B² + P²

 {(5x)}^{2}  =  {b}^{2}   +  {4x}^{2}  \\  \sqrt{ 25{ x }^{2} - 16 {x}^{2}  }  =  base \\   \sqrt{9 {x}^{2} }  = 3x = base

now ,

 \cos(e)  =  \frac{base}{hypotenuse}  =  \frac{3x}{5x}  =  \frac{3}{5}  \\  \tan(e)  =  \frac{perpendicular}{base}  =  \frac{4x}{3x}  =  \frac{4}{3}

 \cos(e)  +  \tan(e)  \\  =  \frac{3}{5}  +  \frac{4}{3}  \\  =  \frac{9 + 20}{15}  \\  =  \frac{29}{15}

mark brainliest if you like

now,

Similar questions