Math, asked by mansikale8923, 11 months ago

If sin A=-5/13,π<A<3π/2 and cos B=3\5 3π/2< B<2π find first one 1}sin[A+B]​

Answers

Answered by amitnrw
3

Given :   sin A= -5/13   π<A<3π/2

cos B=3/5    3π/2< B<2π

To Find : Sin ( A + B)

Solution:

Sin ( A + B) = SinA CosB  + cosA SinB

sin A= -5/13   π<A<3π/2

sin²A + cos²A = 1

=> cosA = - 12/13    as  π<A<3π/2 hence  cos is -ve

cos B=3/5     3π/2< B<2π  

=> sin B = - 4/5  as 3π/2< B<2π    hence sin is -ve

Sin ( A + B) = SinA CosB  + cosA SinB

=>  Sin ( A + B) = (-5/13) (3/5)  + (-12/13) ( -4/5)

=>  Sin ( A + B) = -3/13  + 48/65

=> Sin ( A + B) = 33/65

=> Sin ( A + B) = 0.5077

Learn More:

sin(a+b) = sinA cosB + cos A sin B का प्रयोग करते ...

https://brainly.in/question/15288003

if a=60° and b=30°, find the value of (sin a cos b + cos a sin b) ^2

brainly.in/question/7852027

If a and b are complementary angles then prove that (sinA +cosB)^2 ...

brainly.in/question/7954234

Answered by MaheswariS
6

\underline{\textbf{Given:}}

\mathsf{sinA=\dfrac{-5}{13},\;\;\pi&lt;A&lt;\dfrac{3\pi}{2}}

\mathsf{cosB=\dfrac{3}{5},\;\;\dfrac{2\pi}{2}&lt;B&lt;2}

\underline{\textbf{To find:}}

\textsf{The value of sin(A+B)}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{sinA=\dfrac{-5}{13}}

\mathsf{cos^2A=1-sin^2A}

\mathsf{cos^2A=1-\dfrac{25}{169}}

\mathsf{cos^2A=\dfrac{144}{169}}

\mathsf{cosA=\pm\dfrac{12}{13}}

\textsf{Since A lies in III quadrant,}

\mathsf{cosA=\dfrac{-12}{13}}

\mathsf{cosB=\dfrac{3}{5}}

\mathsf{sin^2B=1-cos^2B}

\mathsf{sin^2B=1-\dfrac{9}{25}}

\mathsf{sin^2B=\dfrac{16}{25}}

\mathsf{sinB=\pm\dfrac{4}{5}}

\textsf{Since B lies in IV quadrant,}

\mathsf{sinB=\dfrac{-4}{5}}

\mathsf{Now,}

\mathsf{sin(A+B)=sinA\;cosB+cosA\;sinB}

\mathsf{sin(A+B)=\dfrac{-5}{13}{\times}\dfrac{3}{5}+\dfrac{(-12)}{13}{\times}\dfrac{(-4)}{5}}

\mathsf{sin(A+B)=\dfra{-15}{65}+\dfrac{48}{65}}

\implies\boxed{\mathsf{sin(A+B)=\dfrac{33}{65}}}

Similar questions