If sin A=-5/13,π<A<3π/2 and cos B=3\5 3π/2< B<2π find first one 1}sin[A+B]
Answers
Given : sin A= -5/13 π<A<3π/2
cos B=3/5 3π/2< B<2π
To Find : Sin ( A + B)
Solution:
Sin ( A + B) = SinA CosB + cosA SinB
sin A= -5/13 π<A<3π/2
sin²A + cos²A = 1
=> cosA = - 12/13 as π<A<3π/2 hence cos is -ve
cos B=3/5 3π/2< B<2π
=> sin B = - 4/5 as 3π/2< B<2π hence sin is -ve
Sin ( A + B) = SinA CosB + cosA SinB
=> Sin ( A + B) = (-5/13) (3/5) + (-12/13) ( -4/5)
=> Sin ( A + B) = -3/13 + 48/65
=> Sin ( A + B) = 33/65
=> Sin ( A + B) = 0.5077
Learn More:
sin(a+b) = sinA cosB + cos A sin B का प्रयोग करते ...
https://brainly.in/question/15288003
if a=60° and b=30°, find the value of (sin a cos b + cos a sin b) ^2
brainly.in/question/7852027
If a and b are complementary angles then prove that (sinA +cosB)^2 ...
brainly.in/question/7954234