if sin A= 8/17 and sinB = 5/13 find the value of sin A cosB+ sinB cosA
Answers
Step-by-step explanation:
Given :-
Sin A= 8/17
SinB = 5/13
To find:-
Find the value of Sin A CosB+ SinB CosA ?
Solution:-
Given that
Sin A= 8/17 -----------(1)
On squaring both sides then
=> Sin^2 A = (8/17)^2
=> Sin^2 A = 64/289
On subtracting above from 1
=> 1-Sin^2 A = 1-(64/289)
=> 1-Sin^2 A = (289-64)/289
=> 1-Sin^2 A = 225/289
We know that
Sin^2 A + Cos^2 A = 1
=> Cos^2 A = 225/289
=> Cos A =√(225/289)
=> Cos A = 15/17------------------(2)
SinB = 5/13----------------(3)
On squaring both sides then
=> Sin^2 B = (5/13)^2
=> Sin^2 B = 25/169
On subtracting above from 1
=> 1-Sin^2 B= 1-(25/169)
=> 1-Sin^2 B = (169-25)/169
=> 1-Sin^2 B= 144/169
We know that
Sin^2 A + Cos^2 A = 1
=> Cos^2 B = 144/169
=> Cos B =√(144/169)
=> Cos B = 12/13------------------(4)
Now, The value of Sin A CosB+ SinB CosA
From (1),(2),(3)&(4)
=> (8/17)×(12/13)+(5/13)×(15/17)
=> [(8×12)/(17×13)]+[(5×15)/(13×17)]
=> (96/221)+(75/221)
=> (96+75)/221
=> 171/221
Answer:-
The value of Sin A CosB+ SinB CosA for the given problem is 171/221
Used formulae:-
- Sin^2 A + Cos^2 A = 1