Math, asked by gudipatianil999, 10 months ago

if sin A = 8/17 then find cos A and Tan A​

Answers

Answered by BrainlyPopularman
10

GIVEN :

sin (A) = 8/17

TO FIND :

cos (A) = ? and tan (A) = ?

SOLUTION :

 \\ \implies{ \bold{  \sin(A)  =  \dfrac{8}{17} }} \\

• Using identity –

 \\  \longrightarrow \: { \bold{  \sin {}^{2} (A)   +  \cos {}^{2} (A) = 1 }} \\

• So that –

 \\  \implies \: { \bold{    \cos {}^{2} (A) = 1 - \sin {}^{2} (A)  }} \\

 \\  \implies \: { \bold{    \cos(A) =  \sqrt{1 - \sin {}^{2} (A)  }}} \\

• Now put the values –

 \\  \implies \: { \bold{    \cos(A) =  \sqrt{1 - {  \left(\dfrac{8}{17}  \right)}^{2}  }}} \\

 \\  \implies \: { \bold{    \cos(A) =  \sqrt{1 - {  \left(\dfrac{64}{289}  \right)}  }}} \\

 \\  \implies \: { \bold{    \cos(A) =  \sqrt{  \left(\dfrac{289 - 64}{289}  \right)}  }} \\

 \\  \implies \: { \bold{    \cos(A) =  \sqrt{  \left(\dfrac{225}{289}  \right)}  }} \\

 \\  \longrightarrow \: \large { \boxed{ \bold{    \cos(A) =   \dfrac{15}{17}   }}} \\

• We know that –

 \\  \longrightarrow \:  { \bold{    \tan(A) =   \dfrac{ \sin(A) }{ \cos(A) }   }} \\

• So that –

 \\  \implies \:  { \bold{    \tan(A) =   \dfrac{  \dfrac{8}{ \cancel{17}} }{  \dfrac{15}{ \cancel{17}}  }   }} \\

 \\  \longrightarrow \: \large { \boxed{ \bold{    \tan(A) =   \dfrac{  8 }{  15 }   }}} \\

Answered by ItzArchimedes
4

 \bigstar\Large\underline{\green{\rm{DIAGRAM}}}:

 \setlength{\unitlength} {1mm}\begin{picture} (5,5)\put(0,0){\line(1,0) {30}}\put(30,0){\line(0,1) {40}}\put(0,0){\line(3,4) {30}}\put(13,-4){3\ cm} \put(32,17){4\ cm}\put(8,23) {5 cm}\put(3,1){$\theta$} \end{picture}

 \bigstar\Large\rm \underline{\purple{GIVEN:}}

  • sinA =  \sf\dfrac{8}{17}

\bigstar\Large\rm \underline{\orange{TO\quad FIND:}}

  • cosA
  • tanA

\bigstar\Large \underline{\green{\rm{SOLUTION:}}}

Given ,

sinA = \sf\dfrac{8}{17}[\tex]</p><p>That means, </p><p>Oppposite side of angle A = 8</p><p>Hypotenuse = 17</p><p></p><p>Finding adjacent side of angle A using Pythagoras theorem</p><p>(Hypotenuse)[tex]^2 = (Base)^2 + (Height)^2

17^2 = 8^2 + H^2

289 - 64 = H^2

H =  \sf\sqrt{225}

H = 15

Now,

cosA =  \sf\dfrac{Adjacent}{Hypotenuse}= \dfrac{15}{17}

tanA =  \sf\dfrac {Opposite}{Hypotenuse} = \dfrac{8}{15}

Similar questions