Math, asked by FidaSaifudheen, 4 months ago

If sin A =( a^2 - b^2) /(a^2 + b^2)
then find 1+ tan A cosA

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \sin( \theta)  =  \frac{ {a}^{2} -  {b}^{2}  }{ {a}^{2} +   {b}^{2} } \\

Now,

1 +  \tan(\theta)  \cos(\theta)  = 1 +  \sin(\theta)  = 1 +  \frac{ {a}^{2} -  {b}^{2}  }{ {a}^{2} +  {b}^{2}  }  \\

 =  \frac{2 {a}^{2} }{ {a}^{2} +  {b}^{2}  }  \\

Similar questions