CBSE BOARD X, asked by KritikaBharadia, 9 months ago

If sin a and cos a are the roots of the equation 4x^2 -kx-1 =0 (k>0) then the value of k is

Answers

Answered by Anonymous
9

Answer:

\sf{The \ value \ of \ k \ is \ 2\sqrt2.}

Given:

  • The given quadratic equation is
  • \sf{4x^{2}-kx-1=0}

  • Roots are sin a and cos a

To find:

  • The value of k.

Solution:

\sf{The \ given \ quadratic \ equation \ is}

\sf{4x^{2}-kx-1=0}

\sf{Here, \ a=4, \ b=-k \ and \ -1}

\sf{Sum \ of \ roots=\dfrac{-b}{a}}

\sf{\therefore{sin \ a+cos \ a=\dfrac{k}{4}...(1)}}

\sf{Product \ of \ roots=\dfrac{c}{a}}

\sf{\therefore{sin \ a\times \ cos \ a=\dfrac{-1}{4}...(2)}}

\sf{According \ to \ the \ Trigonometric \ identity}

\sf{sin^{2}\theta+cos^{2}\theta=1}

\sf{\therefore{sin^{2}a+cos^{2}a=1...(3)}}

\sf{According \ to \ the \ identity.}

\boxed{\sf{a^{2}+b^{2}=(a+b)^{2}-2ab}}

\sf{\therefore{sin \ a^{2}+cos^{2} \ a=(sin \ a+cos \ a)^{2}-2(sin \ a.cos \ a)}}

\sf{...from \ (1), \ (2) \ and \ (3)}

\sf{1=(\dfrac{k}{4})^{2}-2(\dfrac{-1}{4})}

\sf{\therefore{1=\dfrac{k^{2}}{16}+\dfrac{1}{2}}}

\sf{Multiply \ throughout \ by \ 16 \ we \ get,}

\sf{16=k^{2}+8}

\sf{\therefore{k^{2}=16-8}}

\sf{\therefore{k^{2}=8}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\therefore{k=\pm \ 2\sqrt2}}

\sf{But, \ k \ is \ bigger \ than \ zero.}

\sf{\therefore{k \ \neq \ -2\sqrt2}}

\sf{\therefore{k=2\sqrt2}}

\sf\purple{\tt{\therefore{The \ value \ of \ k \ is \ 2\sqrt2.}}}

Similar questions