If sin (A-B) = 1/2 and cos (A+B) = 1/2 , 0°< (A+B) <90° and A > B then find A and B.
ANSWER FAST GUYS
Answers
We are familiar with the trigonometric identity given below.
sin θ = cos(90 - θ)
And we know the trigonometric value given below.
sin 30° = cos 60° = 1/2
Given,
sin (A - B) = 1/2 ⇒ A - B = 30° → (1)
cos (A + B) = 1/2 ⇒ A + B = 60° → (2)
Since 0° < (A + B) < 90°, we can take A + B = 60°.
From the above trigonometric identity, we get,
A + B = 90° - (A - B) ⇒ (A + B) + (A - B) = 90°
Or by adding (1) and (2), we also get,
(A - B) + (A + B) = 30° + 60° = 90°
⇒ A - B + A + B = 90°
⇒ 2A = 90°
⇒ A = 45°
Okay, from (1),
A - B = 30° ⇒ B = A - 30° = 45° - 30° = 15°
Or from (2),
A + B = 60° ⇒ B = 60° - A = 60° - 45° = 15°
Hence,
A = 45° ; B = 15°
Trigonometry :
sin ( A - B ) =
cos ( A + B ) =
sin ( A - B ) = sin 30° [ sin 30° = 1/2 ]
( A - B ) = 30° --> ( i )
Also,
cos ( A + B ) = cos 60° [ cos 60° = 1/2 ]
( A + B ) = 60° --> ( ii )
Adding equation (i) and (ii),
2A = 60° + 30°
2A = 90°
A =
A = 45°
Putting value of A in equation ( i ),
( A - B ) = 30°
45° - B = 30°
B = 45° - 30°
B = 15°
Verification :
Adding (A + B),
45° + 15° = 60°
1 ). That is, 0° < {( A + B ) = 60°} < 90°. This is true.
2 ). Also, A > B
45° > 15° which is true.