if sin(A-B)=1/2 and cos (A+B)=1/2 then find the value of A and B
Answers
Answered by
2
sin(A−B)=1/2
⇒sin(A−B)=30. [∵sin30 =1/2 ]
On equating both sides
A−B=30 ...(1)
cos(A+B)=1/2
⇒cos(A−B)=cos(60 )[∵cos(60)=1/2]
On equating both sides
A+B=60. ..(2)
Adding (1) and (2)
2A=90
⇒A=45
Putting value of A in (i)
45+B=60
⇒B=15
Hence A=45 ; B=15
Attachments:
Answered by
2
Answer:
A=45°, B=15°
Step-by-step explanation:
sin(A-B)=½
sin30°=½
A-B=30°--eq1
cos(A+B)=½
cos60°=½
A+B=60°--eq2
Add eq1 and eq2, we get
2B=30°
B=30°/2
B=15°
Substitute B=15° in eq1
A-B=30°
A-15°=30°
A=30°+15°
A=45°
Therefore, the value of A and B is 45° and 15°.
Similar questions