Math, asked by Anonymous, 6 days ago

If sin(A - B) = 1/2 , cos(A + B) = 1/2, 0°< A + B ≤ 90°, A > B. Find A and B

No spam!! ​

Answers

Answered by kumarvimlesh1977
0

Answer:

A= 45° and B= 15°

Step-by-step explanation:

sin(A-B) = 1/2 = sin(A-B) = sin30°

= A-B=30------(i)

cos(A+B) = 1/2 = cos(A+B) = cos60°

= A+B = 60 ---------(ii)

By adding eq (i) and (ii),

A-B+A+B = 30+60

2A = 90

A= 45°

By putting the value of A in eq (ii),

A+B =60

45+B = 60

B= 15° .

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:0 &lt; A \leqslant 90\degree

\rm :\longmapsto\:0 &lt; B \leqslant 90\degree

\rm :\longmapsto\:A &gt; B

Further, given that

\rm :\longmapsto\:sin(A - B) = \dfrac{1}{2}

\rm :\longmapsto\:sin(A - B) = sin30\degree

\rm\implies \:\boxed{\tt{  \: A - B = 30\degree}} -  -  - (1)

Also, given that

\rm :\longmapsto\:cos(A + B) = \dfrac{1}{2}

\rm :\longmapsto\:cos(A + B) = cos60\degree

\rm\implies \:\boxed{\tt{  \: A + B = 60\degree}} -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:2A = 90\degree

\bf\implies \:A = 45\degree

On substituting the value of A in equation (2), we get

\rm :\longmapsto\:45\degree + B = 60\degree

\rm :\longmapsto\:B = 60\degree - 45\degree

\bf\implies \:B = 15\degree

Hence,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &amp;\sf{A = 45\degree} \\  \\ &amp;\sf{B = 15\degree} \end{cases}\end{gathered}\end{gathered}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions