if sin (A-B) = 1/2 , cos(A+B) = 1/2 , 0° < A+B<90° , A>B , then find the value of A
plz....... i have to submit it morrow morning :'(
Answers
Answered by
3
sinAcosB - sinBCosA = 1/2...........i
cosAcosB - sinAsinB = 1/2 .........ii
so i divide ii
sinAcosB - sinBCosA = cosAcosB - sinAsinB
sinA(cosB + sinB) = CosA(sinB + CosB)
so tanA = 1
A = 45°
cosAcosB - sinAsinB = 1/2 .........ii
so i divide ii
sinAcosB - sinBCosA = cosAcosB - sinAsinB
sinA(cosB + sinB) = CosA(sinB + CosB)
so tanA = 1
A = 45°
srlkhu:
thanx a lot :)
Answered by
1
Let sinAcosB - sinBCosA = 1/2 be equation (i) and
cosAcosB - sinAsinB = 1/2 be equation (ii)
Hence by dividing equation two by one we get;
sinAcosB - sinBCosA = cosAcosB - sinAsinB
sinA(cosB + sinB) = CosA(sinB + CosB)
so tanA = 1
A = 45°
cosAcosB - sinAsinB = 1/2 be equation (ii)
Hence by dividing equation two by one we get;
sinAcosB - sinBCosA = cosAcosB - sinAsinB
sinA(cosB + sinB) = CosA(sinB + CosB)
so tanA = 1
A = 45°
Similar questions