Math, asked by arshabsanal, 19 days ago

If sin(A-B)=1/2,cos(A+B)=1/2,0°A+BB,find A and B​

Answers

Answered by Anonymous
43

Gɪᴠᴇɴ :-

 \sf \bull \:  sin ( A - B )  =  \dfrac{1}{2}  = 30^\circ

 \sf \bull \: cos(A + B)  =  \dfrac{1}{2}  = 60^\circ

ᴛᴏ Fɪɴᴅ :-

 \bull The value of A and B

sᴏʟᴜᴛɪᴏɴ :-

  \sf\bull \: A-B = 30^\circ  \:  \:  \:  \: -  - \:  Eq.1 \\  \\   \sf\bull \: A + B = 60^\circ \:  \:  \:  \:  -  - \:  Eq.2

Now, we will substitute Eq. 1 and Eq. 2, and solve this by föllowing the method of substitution method. We get,

 \sf :  \implies \: A - B + A + B = 30^\circ + 60^\circ \\  \\  \sf :  \implies \:2A = 90^\circ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf :  \implies \:A  = \cancel  \dfrac{90}{2}  = 45^\circ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, we will substitute the value of A in equation 2 and get the value of B. We get,

 \sf  :   \implies \: A  +  B = 60 ^\circ  \:  \\  \\  \sf : \implies45 ^\circ +  B = 60 ^\circ  \:  \\  \\  \sf :  \implies \: B = 60^\circ - 45^\circ \\  \\  \sf : \implies \:B = 15 ^\circ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Therefore, the value of A is 45° and B is 15°.

Answered by BrainlyPopularman
63

GIVEN :–

 \\\bf(i) \: \: \sin(A-B) = \dfrac{1}{2} \\

 \\\bf(ii) \: \: \cos(A + B) = \dfrac{1}{2} \\

TO FIND :–

• Measures of Angle A & B .

SOLUTION :–

• According to the first condition –

 \\\bf\implies \sin(A-B) = \dfrac{1}{2} \\

 \\\bf\implies\sin(A-B) = \sin( {30}^{ \circ} )\\

 \\\bf\implies A-B={30}^{ \circ} \: \: \: \: \: \: \: \: - - - eq.(1) \\

• According to second condition –

 \\\bf\implies\cos(A + B) = \dfrac{1}{2} \\

 \\\bf\implies\cos(A + B) = \cos( {60}^{ \circ})\\

 \\\bf\implies A+B= {60}^{ \circ} \: \: \: \: \: \: \: - - - eq.(2)\\

• Adding eq.(1) & eq.(2) –

 \\\bf\implies A-B + A+B= {60}^{ \circ} + {30}^{ \circ} \\

 \\\bf\implies 2A= {90}^{ \circ}\\

 \\\large\implies \boxed{ \red{ \bf A= {45}^{ \circ}}}\\

• By eq.(1) –

 \\\bf\implies A-B={30}^{ \circ} \\

 \\\bf\implies {45}^{\circ}-B={30}^{ \circ} \\

 \\\large\implies \boxed{ \red{ \bf B= {15}^{ \circ}}}\\

Henceforth , A is 45⁰ and B is 15⁰.

Learn more :–

 \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Attachments:
Similar questions