If sin(A-B)=1/2 , cos (A + B)=1/2 , then Sin(A+B)
Answers
☆
-----( i )
☆
------ ( ii )
- Adding eq i and ii
- putting value of A in eq i
_________________________
Answer:
Solution
[tex]
☆\sf\implies sin ( A - B ) [\tex]
\sf{\red{\boxed{\bold{sin 30 = \dfrac{1}{2} }}}}
sin30=
2
1
\sf\implies sin ( A - B ) = sin 30⟹sin(A−B)=sin30
\sf\implies A -B = 30⟹A−B=30
\sf{\green{\boxed{\bold{A - B = 30 }}}}
A−B=30
-----( i )
☆\sf\implies cos( A + B ) = \dfrac{1}{2}⟹cos(A+B)=
2
1
\sf{\red{\boxed{\bold{cos 60 = \dfrac{1}{2} }}}}
cos60=
2
1
\sf\implies sin ( A - B ) = cos 60⟹sin(A−B)=cos60
\sf\implies A -B = 60⟹A−B=60
\sf{\green{\boxed{\bold{A - B = 60 }}}}
A−B=60
------ ( ii )
Adding eq i and ii
\sf\dag A + B + A - B = 60 + 30†A+B+A−B=60+30
\sf\dag 2A = 90†2A=90
\sf\dag A = 45†A=45
\sf{\green{\boxed{\bold{A = 45 }}}}
A=45
putting value of A in eq i
\dag A + B = 60†A+B=60
\dag 45 + B = 60†45+B=60
\dag B = 60 - 45†B=60−45
\dag B = 15†B=15
\sf{\green{\boxed{\bold{B = 15 }}}}
B=15
_________________________
\sf\longrightarrow sin A + B⟶sinA+B
\sf\longrightarrow sin 45 + 15⟶sin45+15
\sf\longrightarrow sin 60⟶sin60
\sf\longrightarrow \dfrac{\sqrt 3}{2}⟶
2
3
\sf{\green{\boxed{\bold{\dag tan ( A + B) =\dfrac{\sqrt 3}{2} }}}}
†tan(A+B)=
2
3
[\tex]