Math, asked by ShahAshish11831, 5 hours ago

If sin(A-B) =1/2, cos(A+B) =1/2 where 0°

Answers

Answered by amansharma264
4

EXPLANATION.

⇒ sin(A - B) = 1/2. - - - - - (1).

⇒ cos(A + B) = 1/2. - - - - - (2).

As we know that,

We can write equation, as

⇒ sin(A - B) = sin(30°). - - - - - (1).

⇒ cos(A + B) = cos(60°). - - - - - (2).

Now, we write equation as,

⇒ A - B = 30°. - - - - - (1).

⇒ A + B = 60°. - - - - - (2).

Adding equation (1) and (2), we get.

⇒ 2B = 90°.

⇒ B = 45°.

Put the value of B = 45° in equation (2), we get.

⇒ A + 45° = 60°.

⇒ A = 60° - 45°.

⇒ A = 15°.

Values of A = 15° and B = 45°.

Answered by Anonymous
28

STEP-BY-STEP EXPL@NATION:

.

\sin(A-B) =  \frac{1}{2}  \\

\sin(A-B) =    \sin {30}^{ \circ}    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   [ \because \:  \:  \:  \sin {30}^{ \circ}  =  \frac{1}{2}  ]   \\

Comparing \:  both  \: sides,

A-B =    {30}^{ \circ}   \:  \:  \: ...(1)    \\

 \cos (A + B) =  \frac{1}{2}  \\

\cos(A + B) =    \cos {60}^{ \circ}    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   [ \because \:  \:  \:  \cos {60}^{ \circ}  =  \frac{1}{2}  ]   \\

Comparing \:  both  \: sides,

A + B =    {60}^{ \circ}   \:  \:  \: ...(2)    \\

We \:  have,

  • A-B =    {30}^{ \circ}   \:  \:  \: ...(1)    \\
  • A + B =    {60}^{ \circ}   \:  \:  \: ...(2)    \\

Add \:  Eq [1]  \: \And \:  Eq [2],

\implies (A-B) + (A + B) =    {30}^{ \circ}  +  {60}^{ \circ}     \\

\implies A-B + A + B =    {90}^{ \circ}     \\

\implies 2 A  =    {90}^{ \circ}     \\

\implies  A  =    {45}^{ \circ}     \\

Substitute \:  this  \: value  \: of  \: A  \: in \:  Eq [1],

\implies A-B =    {30}^{ \circ}   \:  \:  \: ...(1)    \\

\implies {45}^{ \circ}-{30}^{ \circ} =    B     \\

\implies B = {15}^{ \circ}       \\

Hence,

  • A  =    {45}^{ \circ}  \:  \:  \: \And  \:  \:  \:   B = {15}^{ \circ}    \\

Similar questions