Math, asked by sameershareef511, 1 year ago

If sin (A-B)= 1/2 ,tan (A+B)=√3 then prove that A=45°

Answers

Answered by lukeshkharkar
0

Step-by-step explanation:

LHS

put A=45 then we get

sin (45 -B) =1/2

and

tan (45 - B )=√3

Answered by pintusingh41122
6

If sin (A-B)= 1/2 ,tan (A+B)=√3 then it is proved  that A=45°

Step-by-step explanation:

Given \textrm{sin(A-B)}=\frac{1}{2}

        \Rightarrow \textrm {sin(A-B)}=\textrm {sin}30^{0}

           \Rightarrow \textrm{A-B}=30^{0}

and it is given that \textrm{tan(A+B)}=\sqrt{3}

         \Rightarrow \textrm {tan(A+B)}=\textrm {tan}60^{0}

             \Rightarrow \textrm{A+B}=60^{0}

Now we have   \textrm{A-B}=30^{0}        ..............Equ(1)

         and \textrm{A+B}=60^{0}             ...................Equ(2)

Adding  both equation we get

          \textrm{(A-B)}+\textrm{(A+B)}=30^{0}+60^{0}

    \Rightarrow \textrm{2A}=90^{0}

    \Rightarrow \textrm{A}=\frac{90^{0}}{2}

    \Rightarrow \textrm{A}=45^{0}            

Hence proved

Similar questions