If sin (A + B) = 1 and cos (A - B) = 1, 0° < A + B ≤ 90°, A ≥ B, find A and B.
[Proper solution needed]
Answers
Answered by
1
sin (A + B) = 1
sin (A + B) = sin 90 (1)
cos (A - B) = 1
cos (A - B) = cos 0 (2)
From (1) & (2)
A + B = 90 (3)
A - B = 0 (4)
(3) + (4)
2A = 90
A= 45
Substituting this in (4) we get
B= 45
sin (A + B) = sin 90 (1)
cos (A - B) = 1
cos (A - B) = cos 0 (2)
From (1) & (2)
A + B = 90 (3)
A - B = 0 (4)
(3) + (4)
2A = 90
A= 45
Substituting this in (4) we get
B= 45
Anonymous:
Thank you.
Answered by
26
Q. If sin (A + B) = 1 and cos (A - B) = 1, 0° < A + B ≤ 90°, A ≥ B, find A and B.
Solution :
⇒ sin (A + B) = 1 = sin = 90°
∴ A + B = 90° ..............(i)
⇒ Again, cos (A - B) = 1 = cos 0°
∴ A - B = 0° ...............(ii)
⇒ Adding (i) and (ii), we get
⇒ 2A =90°
⇒ A = = 45
∴ A = 45°
⇒ From (ii), we get
B = A = 45°
Hence, A = 45° and B = 45°
Similar questions